PonSp’éc;:)é

ECHNOLOGIES

PolySpace™ for C++
Documentation

How to Contact The MathWorks

www.mathworks.com Web

comp.soft-sys.matlab Newsgroup

www.mathworks.com/contact TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Release 2007a+

2/377
Revision 4.2 vA

http://www.mathworks.com/contact_TS.html
mailto:suggest@mathworks.com
mailto:bugs@mathworks.com
mailto:doc@mathworks.com
mailto:service@mathworks.com
mailto:info@mathworks.com

TABLE OF CONTENTS

1. PolySpace documentation set

2. Getting started

2.1. General Requirements

2.1.1. Computer Configuration
2.1.2. Installation Guide
2.1.3. Structure of this document

2.2. Step 1: PolySpace Client - Setting up and launching an analysis on a single class
2.2.1. Analysis prerequisites
2.2.2. Setting up a PolySpace Client analysis
2.2.2.1. Select results directory
2.2.2.2. Select the files of the analysis
2.2.2.3. Select the class to analyse
2.2.3. PolySpace Client: running the analysis
2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
2.2.3.2. Progression of the analysis
2.2.3.3. End of the analysis

2.3. Step 2: Class Analyzer
2.3.1. Sources to be analysed
2.3.2. Architecture of the generated main
2.3.3. Log file
2.3.4. Characteristics of a class and messages of the log file
2.3.5. Behaviour of Global variables and members
2.3.6. Methods and classes specificities

2.4. Step 3: PolySpace Viewer - Exploration of results

2.4.1. Modes of operation

2.4.2. Downlaod results into the Viewer

2.4.3. Analysing of PolySpace results (“training.cpp”)
2.4.3.1. RTE view
2.4.3.2. Colours in the Source code view
2.4.3.3. More examples of run-time errors
2.4.3.4. Advanced results exploration
2.4.3.5. C++ specific checks
2.4.3.6. Miscellaneous

2.4.4. Methodological asssitant
2.4.4.1. Assistant dashboard

2.4.4.2. Choose a methodological assistant
2.4.5. Report Generation

2.5. Launch PolySpace Remotely
2.5.1. Steps of Launching

2.5.2. Management of PolySpace analysis in remote: the PolySpace Spooler
2.5.3. Batch commands

2.5.4. Share analyses between accounts

2.6. Summary

Release 2007a+ 3/377
Revision 4.2 vA

3. Analysis setup

3.1. Common Compile errors
3.1.1. Includes
3.1.2. Specific keyword or extended keyword
3.1.3. Initialization of global variables

3.2. Dialect issues
3.2.1.iso versus default dialects
3.2.2. CFront2 and CFront3 dialects
3.2.3. Visual dialects

3.3. Link messages
3.3.1. STL library C++ Stubbing errors
3.3.2. Lib C stubbing errors

3.4. Methodoloqgy using the pre-processed .ci files

3.5. OS and target specifications
3.5.1. List of already predefined compilation flags
3.5.2. Target specifications

3.6. Intermediate lanquage errors

3.7. Advanced setup
3.7.1. Reduce oranges step by step
3.7.1.1. Vary the precision level
3.7.1.2. Apply some manual stubbing
3.7.1.2.1. Examples. specification
3.7.1.2.2. Coloured source code example
3.7.1.2.3. Specify the call sequence
3.7.1.2.4. Constraint for data
3.7.1.2.5. Recoding of some specific functions
3.7.2. Approximations made by PolySpace
3.7.2.1. Volatile variables
3.7.2.2. Structures with volatile fields
3.7.2.3. Absolute addresses
3.7.2.4. Pointer comparison
3.7.2.5. Left shift on negative variables
3.7.2.6. Some bitwise operators
3.7.2.7. Bitfieds
3.7.2.8. Float loops
3.7.2.9. Shared variables
3.7.2.10. Array of function pointers
3.7.2.11. Trigonometric functions
3.7.2.12. Unions
3.7.2.13. Loop exit conditions
3.7.2.14. Constant pointer
3.7.3. Variables
3.7.3.1. How are variables initialized?
3.7.3.2. Data and coding rules
3.7.3.3. Variables: Declaration and definition
3.7.3.4. How can | model variable values external to my application?
3.7.4. Types promotion
3.7.4.1. An example of an unsigned promoted to sighed
3.7.4.2. What are the promotions rules in operators?

Release 2007a+ 4/377
Revision 4.2 vA

3.7.5. Built-in functions

4. PolySpace class analyzer process

4.1. Why providing a class analyzer?

4.2. Simple class

4.3. Simple inheritance

4.4. Multiple inheritance

4. 5. Abstract class

4.6. Virtual inheritance

4.7. Other types

5. PolySpace C++ add-in for Visual Studio

5.1. PolySpace usage inside Visual Studio
5.1.1. PolySpace Parameters Inside Visual Studio
5.1.2. Your first PolySpace Class analysis inside Visual Studio
5.1.3. The configuration file and default options

5.2. Launching an analysis on the entire project

6. PolySpace UML Link RH

6.1. Getting Started
6.1.1. Step 1 - Open and display the example airbag model
6.1.2. Step 2 - Starting an analysis
6.1.3. Step 3 - The Start Analysis Panel
6.1.4. Step 4 - Navigating from the PolySpace results to the Rhapsody model

6.2. PolySpace Panel

6.3. Installing the Integration into an existing model

6.4. Other Topics

7. Working with results review

7.1. Basics: prerequisite being able to review PolySpace results
7.1.1. Grey follows red
7.1.2. What is the message and what does it mean?
7.1.3. What is the C++ explanation?
7.1.4. Review run-time errors: Fix red errors
7.1.5. Review dead code checks: why is grey code interesting?
7.1.6. How to conclude an orange review
7.1.6.1. What is an orange?
7.1.6.2. What are the different sources of oranges?
7.1.6.3. How to determine the cause of one orange?

7.2. Methodoloqy: selective orange review

Release 2007a+ 5/377
Revision 4.2 vA

7.2.1. The basic principles

7.2.2. The rationale behind the approach

7.2.3.In practice

7.2.4. Step by step

7.2.5. Considering the effects of application code size

7.3. Cateqgory of checks

Release 2007a+
Revision 4.2 vA

7.3.1. Function returns a value: FRV

7.3.2. Non null this-pointer: NNT

7.3.3. Positive array size: CPP

7.3.4. incorrect typeid argument: CPP

7.3.5. incorrect dynamic cast on pointer: CPP

7.3.6. incorrect dynamic cast on reference: CPP

7.3.7. invalid pointer to member: OOP

7.3.8. Call of pure virtual function: OOP

7.3.9. incorrect type for this-pointer: OOP

7.3.10. potential call to: INF

7.3.11. Non-Initialized Variable: NIV/NIVL

7.3.12. Non-Initialized Pointer: NIP

7.3.13. User Assertion failure: ASRT

7.3.14. Overflows and underflows

7.3.14.1. Scalar and Float Overflows: OVFL

7.3.14.2. Scalar and Float Underflows: UNFL

7.3.14.3. Float underflow and overflow: UOVFL

7.3.14.4. Overflow on the biggest float

7.3.14.5. Constant overflow

7.3.14.6. Float underflow versus values near zero
7.3.15. Scalar or Float Division by zero: ZDV

7.3.16. Shift amount is outside its bounds: SHF

7.3.17. Left operand of left shift is negative: SHF

7.3.18. Power must be positive: POW

7.3.19. Array index is outside its bounds: OBAI

7.3.20. Function pointer must point to a valid function: COR

7.3.21. Wrong number of arguments: COR

7.3.22. Wrong type of argument: COR

7.3.23. Pointer is outside its bounds: IDP

7.3.23.1. Understanding addressing
7.3.23.1.1. hardwareregisters
7.3.23.1.2. NULL pointer
7.3.23.1.3. Comparing address
7.3.23.2. Understanding pointers
7.3.23.2.1. How does malloc work for PolySpace?
7.3.23.2.2. Structure Handling
7.3.23.2.2.1. Array conversions. COR
7.3.23.2.2.2. Mapping of a small structureinto a bigger one
7.3.24. logic_error is thrown: EXC

7.3.25. runtime_error is thrown: EXC

7.3.26. Function throws: EXC

7.3.27. Call to throws: EXC

7.3.28. destructor or delete throws: EXC

7.3.29. Main, tasks or C library function throws: EXC

7.3.30. exception raised is not specified in the throw list: EXC

7.3.31. throw during catch parameter construction: EXC

7.3.32. Continue execution in __except: EXC

7.3.33. Unreachable code: UNR

7.3.34. Values on assignment: VOA

6/377

7.3.35. Non Terminations: Calls and Loops

7.3.35.1. Non Termination of Call: NTC
7.3.35.2. Non Termination of Loop: NTL

7.4. Advanced results review

7.4.1. Red checks where grey checks were expected

7.4.2. Potential side effect of ared error

8. Options description

8.1. Sources/Includes

8.1.1. -results-dir Results Directory

8.1.2. -sources files or -sources-list-file file_name

8.1.3. -l directory

8.2. General

8.2.1. -prog Session identifier

8.2.2. -date Date

8.2.3. -author Author

8.2.4. -verif-version Version

8.2.5. -voa

8.2.6. -keep-all-files

8.2.7. -continue-with-existing-host

8.2.8. -allow-unsupported-linux

8.3. Targets/Compilers

8.3.1. -target TargetProcessorType

8.3.2. -OS-target OperatingSystemTarget

8.3.3. -D compiler-flag

8.3.4. -U compiler-flag

8.3.5. -include filel][file2],...]]

8.3.6. -post-preprocessing-command command

8.3.7. -post-analysis-command <file name> or "command"

8.4. Compliance with standards

Release 2007a+
Revision 4.2 vA

8.4.1. -dos

8.4.2. Embedded Assembler

8.4.2.1. -discard-asm
8.4.2.2. Pragmas asm
8.4.3. -wchar-t-is-unsigned-long

8.4.4. -size-t-is-unsigned-long

8.4.5. -no-extern-C

8.4.6. -no-stl-stubs

8.4.7. -dialect DialectName

8.4.8. -wchar-t-is

8.4.9. -for-loop-index-scope

8.4.10. Visual specific options

8.4.10.1. -import-dir directory

8.4.10.2. -ignore-pragma-pack

8.4.10.3. -pack-alignment-value value

8.4.10.4. -support-FX-option-results
8.4.11. -ignore-constant-overflows

8.4.12. -allow-undef-variables

8.4.13. -allow-negative-operand-in-shift

8.4.14. -Wall

7/377

8.5. Inner settings

8.5.1. -main sub_program_name
8.5.2. Generate a main using a given class
8.5.2.1. -class-analyzer
8.5.2.2. -class-only
8.5.2.3. -class-analyzer-calls
8.5.2.4. -no-constructors-init-check
8.5.3. -main-generator-calls
8.5.4. General options for the generation of mains

8.5.4.1. -function-called-before-main
8.5.4.2. -main-generator-writes-variables
8.5.5. -no-automatic-stubbing
8.5.6. -ignore-float-rounding
8.5.7. -detect-unsigned-overflows
8.5.8. -extra-flags option-extra-flag
8.5.9. -cpp-extra-flags flag

8.6. Precision/Scaling

8.6.1. -quick
8.6.2. -O(0-3)

8.6.3. -from verification-phase

8.6.4. -to verification-phase

8.6.5. -path-sensitivity-delta number

8.6.6. -context-sensitivity "procl[,proc?[,...]]"
8.6.7. -context-sensitivity-auto

8.6.8. -respect-types-in-globals

8.6.9. -k-limiting number

8.6.10. -respect-types-in-fields

8.6.11. -inline "proci[,proc2[,...]]"

8.6.12. Tuning precision and scaling parameters

8.7. Multitasking (PolySpace Server only)

8.7.1. -entry-points taskl[,task?2[,...]]
8.7.2. Critical sections
8.7.3. -temporal-exclusions-file file_name

8.8. Specific batch options

8.8.1. -server server_name_or_ip[:port_number]

8.8.2. -hlelp]

8.8.3. -v |-version
8.8.4. -sources-list-file file_name

9. Appendix

9.1. Glossary

9.2. Abstract semantic

Release 2007a+
Revision 4.2 vA

8/377

PolyS pace

Back to table of contents Next

1. PolySpace documentation set

This document represents all the documentation required to use PolySpace Products, irrespective of
whether you are a beginner or an experienced user. It covers both PolySpace Client and PolySpace

Server.

Are you looking to analyse

L]

One class?
o Do you want to perform your first analysis and results review?

o Is it possible for you to restrict data (functional) ranges in the file?
o Do you have issues with setting up or launching an analysis?

s When reviewing results, is your main concern
« Productivity? Do you wish to focus on productivity by finding bugs quickly?

» Reliability? Do you want to examine every result PolySpace provides?
A class coming from project using the Microsoft Visual Studio .NET IDE?
A class analysis taking place on a server, and do you want access the queued analysis?
Analyses code generated from UML models using PolySpace UML Link RH?

Detailed contents

PolySpace Installation. Please refer to Pol ySpace_i nstal | ati on_gui de. pdf and to

Pol ySpace_l i cense_install ati on_gui de. pdf located on the CD-ROM (in <CD- ROW>
\ Docs\Install).

"Getting Started" explains how to get started with PolySpace. It explains the principles of the
tool, describes the installation procedure, and explains how to use the product with reference to
some simple scenarios.

"Setting up an analysis" details all features of PolySpace which are relevant when preparing to
analyse your code. It is a comprehensive reference manual for the launching of analyses. It
contains all information related to the launching of an analysis, error messages at different
phases of an analysis, and means at setup-time to reduce ill founded warnings (oranges).
"PolySpace and class analyzer process" gives a strategy for analyzing C++ classes. This allows
the developer to identify, and possibly remove most of the runtime errors present in a class
depending of the type of the class to analyze.

The PolySpace C++ add-in for Visual Studio provides automatic source code verification and
bug detection in source code developed inside the Visual IDE.

While using Collaborative Model-Driven Development, run-time errors can be caused either by
design issues in the model itself or faulty hand written code. These reliability flaws can
sometimes be found using code reviews and intensive testing — but these techniques are time-
consuming and costly. PolySpace UML Link RH performs an exhaustive verification of the C++
code and automatically flagging flaws directly in the original Rhapsody model, enabling
engineers to fix these issues quickly and early during the design process.

Release 2007a+ 9/377
Revision 4.2 vA

. "Reviewing results" details all features of PolySpace which are relevant when reviewing your

results. It is a comprehensive reference document, giving typical examples for each error
cateqgory, offering advice on getting started with your first results, advising which colours to look

at, and explaining how to find bugs efficiently.
. "Advanced setup” includes options description for PolySpace, hints and tips for quicker

PolySpace Verifier analyses, and a complete description of those features which are used in
order to launch a PolySpace analysis.

Release 2007a+ 10/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2. Getting started

Related subjects:
2.1. General Requirements

2.2. Step 1. PolySpace Client - Setting up and launching an analysis on a single class
2.3. Step 2: Class Analyzer

2.4. Step 3: PolySpace Viewer - Exploration of results

2.5. Launch PolySpace Remotely

2.6. Summary

Release 2007a+ 11/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.1. General Requirements

Related subjects:
2.1.1. Computer Configuration

2.1.2. Installation Guide
2.1.3. Structur e of this document

Release 2007a+ 12/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.1.1. Computer Configuration

Minimum hardware requirements to follow step by step this tutorial on a Windows PC are described in
the installation guide available from the PolySpace installation CD-ROM (\Docs\Install
\PolySpace_Install_Guide.pdf)). Timing constraints are described as follows:

* The installation of PolySpace products takes around 5 minutes (see the complete
installation guide PolySpace_Install_Guide.pdf).

* The first step of this tutorial takes about 15 minutes.
* The second step of this tutorial takes about 15 minutes.

* The third step of this tutorial takes about 5 minutes.

Release 2007a+ 13/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.1.2. Installation Guide

Note: If the PolySpace products are already installed on your computer, please go directly to step 1.

The PolySpace products are delivered on a CD-ROM. There are 4 modules:

1. PolySpace Client for C/C++ analysing single class.

2. PolySpace Server for C/C++ analysing classes or composite analysis.

3. PolySpace Viewer is the graphical user interface to explore the results computed by
P

4

olySpace Client or PolySpace Server.
PolySpace Spooler is the graphical interface to manage analysis sent in remote.

Please refer to PolySpace installation manual for installing the PolySpace products.

Release 2007a+ 14/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.1.3. Structure of this document

Once the installation is done, you can launch PolySpace by using the following icons that were placed
on your desktop:

PolySpace Launcher PolySpace Viewer PalySpace Spooler
; Shortcut Shartout r Shortout
Fd 2 KB 2 KB [d

This Getting Started will focus on the following two exercises and three steps using The PolySpace
Client and the Viewer:

* In Step 1 we will analyze a simple class in “t r ai ni ng. cpp” by using the class
analyzer available in PolySpace Client.

* In Step 2 we will describe the capabilities of the class analyzer.

* In Step 3 we will review the results obtained during Step 1 by using PolySpace

Viewer
* In the last step, instead of performing a PolySpace analysis locally, we will send it

remotely to a server.

Release 2007a+ 15/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.2. Step 1: PolySpace Client - Setting up and launching an analysis on a
single class
This paragraph describes a basic class analysis. It focuses on the analysis of MathUtils class of

“t rai ni ng. cpp”, which is included in the PolySpace installation directory and located at:
<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Cpp_Long\ sour ces\trai ni ng. cpp.

The PolySpace analysis process is composed of three main phases:
1. First, PolySpace checks the syntax and semantic of the analyzed file(s). However, as
PolySpace is not associated to a particular compiler, benefits of this phase are triple for the
analysed source code: ANSI C++ compliance, portability and maintainability.
2. Then, PolySpace seeks the main procedure. If none is found, The PolySpace Client for
C/C++ will generate one automatically. By default, the main will build an instance of the class
using the constructor and call all its public and protected function methods.
3. Finally, PolySpace proceeds with the code analysis phase, during which run-time errors
are detected and highlighted in the code.

Related subjects:
2.2.1. Analysis prerequisites
2.2.2. Setting up a PolySpace Client analysis
2.2.3. PolySpace Client: running the analysis

Release 2007a+ 16/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.1. Analysis prerequisites

Any analysis requires the following:
 PolySpace Client For C/C++ product and its related license file correctly installed;
* Source code files (in this case “t r ai ni ng. cpp”) and all header files that it may directly or
indirectly include. For this tutorial we will see later that we need three header files, “t r ai ni ng.
h”, “zz_utils. h”and “mat h. h” in order to analyse the class Mat hUt i | s in“t rai ni ng. cpp”.
 All “- D’ compilation switches necessary to compile the file are known. Please note that in

this tutorial, no “- D" is necessary to compile “t r ai ni ng. cpp”.

Release 2007a+ 17/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Back to table of contents Next

Previous

2.2.2. Setting up a PolySpace Client analysis

“2 Double-click on the PolySpace Launcher icon:
FolySpace Launcher
Shortcut
2 kB
A dialog box window appears proposing to launch one of the following categories of analysis mixing the type of

product and the language:

PolySpace Desktop / Verifier Launcher [x]

“Select a product -Select a language

{* Deskiop Launcher e

" Werifier Launcher 4

" Adaf3/idads

k. Cancel

The Graphical Interface of PolySpace analysis Launcher is displayed as below:

18/377

Release 2007a+
Revision 4.2 vA

il = SaarT Fiwal s o P seche i s (B
Lot VRS EB :.:H“h--. it N——
ek |
1o e
ol e W R 11
Py Lpmca e el
L e]
bk ey
Pl sl bl g Ve iy bl e |
Pl bbb | - en fomesonn-facsapec-Eilen]
Voppuln D8 sCiony | -pesal Ta-ali |
L=
- ,‘ n
! . = |__.- '[_ _l _l Al Tl
Lot L] o oy Mmoo bl £ (6 Lol Lol Lol
E'!-w-hu bty i e b T !i.
i'.w: b,
o ra)
Mﬂq*wamimmmlw
“2 Click on Fi | e/ New Pr 0j ect to start an analysis:
H PolySpace Client
F=8 Edit Tools Help
: [: ,
I tiew projec K » @ *| @
fﬂ Dpen project 3
B 5ave project [Click here to create a new project | W =
Save as new projeck e Path
¥ Cuit Chrl+0
The PolySpace Client New Project window opens. It contains four sections:
« Atthe very top, the title bar, which contains usual icons and menus;
* Top left is the list of files to analyze, along with include and results directories;
e Topright is the set of options associated with the analysis that will be processed,;
« Finally the bottom area allows following the execution and progress of the analysis.
Release 2007a+ 19/377

Revision 4.2 vA

.I-'nlp‘-.'m.. ® Lherd 1o OFF - Mew Pio jeci
B [t Tesle - by

oW a9 i bl Ak kAW
§ —_——
[P — |‘E||E] . A [£
e Wik Ll
g e e || |
I P——
Ty e i Prigeit s
Fein L Gy -
Aufrer Pk —mdran
B T v i LY ! T S TR
Evaenren wiiecis of somw aragrreenin =d | | s
Efip M Fldrmabi B 1 1 In-'n—d‘r-l
Canirus wid e cuneet cofipaaion |] | o W s bl
ot semn sy Lo Sty 1 | el snupperisd

RS L
| Compbaal ol b
:rr Fary it e HeEr
| i a s e |

Pehe et | |

Pigrilth [eCtoRy | -comal tr-d42c]
¢ ok Spsch_Benits LZ'

Fastn wereny [|r-rm-__| -]
Sy et - e —— . O = 3 | = | tae
O B D 0 O D Lk D D 0300 O DD [t a0 MmOEDD 0
Eﬁ:‘fi] sewn ey (14 [re]
.iﬂlm
e
Related subjects:
2.2.2.1. Select resultsdirectory
2.2.2.2. Select thefiles of the analysis
2.2.2.3. Select the classto analyse
20/377

Release 2007a+
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.2.2.1. Select results directory

“2 Start by updating the result directory name by clicking on the browse button :I

sults Directory [-resulta-dic]

CPolySpace_Resuls

This directory is the one where PolySpace Desktop will store the results of the analysis. By default,
PolySpace will store results in “C: \ Pol ySpace_Resul t s”. This is the directory that we will choose

for the analysis.

Release 2007a+ 21/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.2.2.2. Select the files of the analysis

“2 Now, Click on the IEI button (right of the “New Pr oj ect ” label). It opens the “Pl ease select a file”
window, from which you can select one or several files to analyse.

. Please select a file

ook _] sowcs +Im B

) B My Compuer
A analyzer | 4 3% Floppy (&)
(L) controler | =L ocal Disk ()
(2] ghobal_c 2 PolvSpece
) intiekzatiof | PalySpaceF orCandCRP
£l main | Exsmples
a3 multiclerfve) | sources =
[receiver
(*.cpp) and (*.c) files o
[Recurse subdireciones
Source files [-Sources) Directorss to inchde [-)
. = |

“2 In the “Look i n” section, click on ™ and select “<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Cpp_Long
\ sour ces”. A list of files appears in the box (<Pol ySpacel nst al | Di r > corresponds to “C: \ Pol ySpace
\ Pol ySpaceFor CandCPP” in the figure above).

“2 Select “t r ai ni ng. cpp” and click on EI in the “Source files [-sources]”section (bottom right) of the
window. The file is now listed among the source files to be analyzed.

Release 2007a+ 22/377
Revision 4.2 vA

H Pleaze select a file

ok [e G ==

El analyZer :I sanalogic
Bl contraer [E] sensitivity
Bl giobal_e [E] simndater
%] ntistzations [£] tasking
=] main] tasks

=] meatric

|:| rLifticleriyed ':| zz_utis
|:| reehar

(* cpp) and (* <) fles v
[Recurse subdirectories
Source fies [-sources] Directories to inchide [4]

] (¢] EaL kY

(= PolySpace PolySpaceForCandC PP Examples'Dema_Cpp_Long'soiscest!

K 3|

Lok] [g |

“2Click on OK to go back to the “Pol ySpace Cient for CPP — New Project”window.

Note: it is also possible to drag a directory or source files and drop it them directly in the “Fi | e Name/
Absol ut e Pat h” part (top left of PolySpace Client) without using the “Pl ease sel ect a fil e” window.

Release 2007a+

23/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.2.3. Select the class to analyse

2 Now, click on | # PolySpace inner seftings and expand the “Pol ySpace i nner
settings” group.

2 Check the box lin the “Gener at e a mai n” column that is associated to the “-main-
generator” line as shown below It enables the “- cl ass- anal yzer” option allowing to give the name of the class
to analyse (see also step 2). For the needed of this tutorial, please type “Mat hUt i | s” in the column at the centre
as shown in the figure below. When the class is surrounded by a name space, use the standard C++ syntax
<namespace>: : <cl assnane>.

Matne Value Intetrial name
Enalysiz options
=) General
Session idertifier Mesy Project Harag
Diate 1052006 Hdate
Ao hard Lalthor
Project version 11 Luerif-yersion
Examing effects of scalar assionments i F0d
teep all intermediste fles £ Hieep-all-files
Cartinue with the current configuration I | FCamtinue-wwith-gxisting-host
Cortinue even on an unsupported Linu: distribution L Fallow-Lunsupported-linu

[+ TargetCompiler
[t Cormpliance with standards

=l PolySpace inner settings
[t Specify a Visual kind of main

<]

[zl Generste a main uzing a given clazs

Mathitils Holazs-analyzer
Lnalyze only the given class D Holazs-only
Functions called by the genersted main default ¥ | Lolass-analyzer-calls
[t Generste a main using given functions D
[Stubking
[t Aszumptions
[Others
[Precision/Sealing
[Muttitasking

2 Itis also recommended to select the —voa option. This option allows you to give some information on each
scalar assignment with possible range of values. It can help understanding PolySpace messages.

Notes: When you want to analyse classes alone, the —cl ass- onl y option can been checked. It means that
even if you add any other classes and function members definitions, PolySpace will stubs them. This option
accelerates analysis and allows to check robustness issues only on the class. For the need of this tutorial, it is
not necessary to check this option: the “Mat hUt i | s” class does not depend on other classes.

Release 2007a+ 24/377
Revision 4.2 vA

PonSpace

TECHHOLOGIES

Previous Back to table of contents Next

2.2.3. PolySpace Client: running the analysis

“2 Click on to start the analysis. Alternatively, you can click on the button in the title bar to run PolySpace
Client with the current setting.

The window titled “Save t he project as .." opens. You can decide where to store the configuration information
related to the analysis. Here, create a file called “denot ut or i al ” and save it under PolySpace result directory. The
full name of that file will be “denot ut ori al . dsk”.

~

- Save the project as
x 2 2EE

Loak in: |i]i'| PalySpace_Results [

o

":3
Iy Recent
Documents

-

Bt

Desktop

%

by Documents

&L

My Computer

——

g Sesszion identifier 'u:i-emn-nt.i;r-tl:uriél. -
hly Metwweark] i .
Places Files of type: i*_dsk !vj | Cancel |

2 Click on “ OK” to go back to the “ Pol ySpace Cient for CPP — New_ Project” window and click again on

to proceed forward.

Release 2007a+ 25/377
Revision 4.2 vA

- WPy pace HsosS) deesed ey el il

W Cearwermle o wen o e given durcione
W s i (e I
& Thrarg
s e i e
R L]
= Frecasrylosiry

| sl DDy [- corml teedie)

L Wkpe By

E

Aem & L
il Pt Adpmay Fairy X o L o R A R L H-ud._m __-_-_-'-..:pu-.—..._ -
drwwgim P e et g e || gt e
+ Tergel procenics broe ' bt climgt
Gl wfhers i et Wi Poky e il L il -l
Do Propros e Macioa
Lt Svaim] ey e v ek L
I i
e rqd b mpply b peeproiee e Py e e
Cranastn i i Wl a5 Te Sdor e e] f—
= Comphsee wih dewem
= Pubfipace Feer sty
o Dpmody 8 Vel Shis complart mer .
= ol il s V0P @ e il . =
[T T i iy
- - Bk e i SRR by il | ch ey
| By r———— e L e o — S
— CoeT (Fabi el il e P e Ll | rre-corsinciors-nd chac

Fgmts woityin || L] L R
[—— I — I e 0 _!-..... I 1Fa [- | o [| | Pt
T mem meE 0202 wWoe 020 @es 00 oD DEm mmE mem Tmom mo
E:mm Smwonnia iy 14 '|+l-|
li'hn Verifying hidt cmlifaialioh ... -
[fHmeCy > MMM = (1 IELE 1
Pl
I ruaiog menp 5 1GE 1 K 11,01 E8i
Fanp »s ITRAN ¢ aK
Tag spece svmilable ix CoiPelyipscel Folyipacs Chmson' FIT Cpgeiniesg »= LOEN : aK JAL. 80 CEj
*¥8 Carfiparation of cha Boast @ OF
Checking ilsenss ...
Lieense s €
Fraitiesg wt1 Ray 9. 28O Phidedd
ArEdEESEERTEETEATERTESRESTERTERAREAY "
[t L Sl

A progress report is displayed in the bottom part of the graphical interface, indicating that the analysis is being

performed. The button “Execut e” is also grayed out.

Note: you may press the Stop Execution button - (L@ stop executin |

part of the current tutorial.

- in order to interrupt the analysis but it is not

Related subjects:

2.2.3.1. Parsing errors during preliminary PolySpace analysis stages

2.2.3.2. Progression of the analysis
2.2.3.3. End of the analysis

Release 2007a+
Revision 4.2 vA

26/377

y Qz HMOLOGIES
Previous Back to table of contents Next

2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
After some checks, PolySpace will show an error message:

"

Message

i@ Werification process Failed

Let’s try and understand why we get this error message.
First possible cause for the error message: Hardware recommendation

If this happens, please verify whether your computer meets the minimal hardware configuration requirements
described in section 1. Moreover, a message like the following one is displayed in the bottom part of the graphical

interface:

| Bpocus | ﬁ
| [[[o] v
[relrifin] [eeliifin] 00 00 Lifriles] 1001 0 00 (Lifrrfen] 001 (0) (iR]]
E‘le-’-\.:-; A ;lil Fertd | W
et e
h"ﬂ" YVerifying koot conflpusetisn ... i
¥ raicg Bewsry > MM 5 3 LE0EN
Tuwg 5 160 (i 4 1735 P
Tiege 3= IVEAA : Ro = grpsa *
EBSH port avaliable 1 L1]
Sapial pIEt ceml] awadlakle s o
Zachal piIE chal srallable : o
T 1 scEor Goowred
Fresrs Found when Terifying BsE configu=atisn.
Tou wuss fin thes befope lemching spain
& P —Tontizus-with-exlating-BOat L
e]

2 Type “host " in the “Sear ch i n the | o0g:” box and click on E' to search if the error corresponds to a
hardware recommendation problem.

If the error message corresponds to the one shown above and in order to continue analysis, you can either:
» upgrade your computer to meet the minimal requirements, or
e usethe—continue-w th-existing-host option which overrides the initial check for minimal
hardware configuration. To do so, please follow the following steps:

“2 To set up the —cont i nue-w t h- exi sti ng- host option, please type “cont i nue” in the Search internal

. Search internol name from the selected ine | contius | "i :
name from the selected line =" " ' 21 - top right box -

“2 Then click on . It will show all options containing “cont i nue” in the set of options part below:

Release 2007a+ 27/377
Revision 4.2 vA

|: Search inlemal name from the sslscied e | Contnue I

|| reame Vahse Irtesrial name
| taneslysis options
= Gersral |
Autinor | vock _poushor
Progect version 10 _ puerit.version
Examine effects of scaler assignments ' 8] ...
Hesp ol intermecale fles [} heep-al-fhes
-ortirasd éven if réd errors ane detecied] --:utrmwm-redm
Contirees with the current conffiguration [F] pontirnes-with-endsting-host
¥ Targetiompder
¥ Complance with standards
* PolySpace nner settings
¥ Precizion/Scalng
2 Check the box lin the “Value” column that is associated to the “- cont i nue- wi t h-

exi sting-host” line as shown below.
Second possible cause for the error message: Information about Header files

Another cause of error may be that PolySpace Desktop misses some information about header files.

'| P Laooss] |
I | - | | I I I | Tow
Lifaafl] e eliodii} [LiRiifn] fonlendi] O D00 b [erfeifin OFEEI 00 i) (LR]
—
ﬁ-::.-wuq Fopar oh i e 0 '“| ll'l'
. el dhuind SRR ;.o -
ﬁ-?ﬁr i
¥ Fullog OF-rarget salazis implies) =D SIFF TOOE__-unsigeed =D FUROLFF_TTHE__=int =0 STRICT ANEE =0 snline =inlise =D signed esighed =0 g wa lises
THLJET FPALs
= leyodxiwe o Fol pRpace /T Y, I Tousg e Tent_Cpp_Lang/ ssurcep /CrsIning. opp™, Iine I cacsacpophic srcoci sould poc open scuxnce file “mach. B
finclade <Eath,. b
L fArfdrfoeld slEef SET&dTed LA Thé CohPLlalled & "TERISLAGS. OBH .
Compi arlos Terminarsd,
FATAL E0LOC 1 ECOPE &41T With STaTus 4
FATAL =erorp & poshles during copy-peeproc-liss. Teising.
Fuilute at: Sep I8, J00% 21:28:48 -
LA : 2
[somplenl

In the tutorial, as shown above, the file named “nmat h. h” can not be found. To fix this problem, you need to

indicate its location. As PolySpace is not associated with one particular compiler, it is mandatory to indicate where
library files are stored.

In our “t r ai ni ng. cpp” file analysis, the related “mat h. h” file is one of includes distributed with PolySpace C++
product located in <Pol ySpacel nstal | Di r >\'i ncl ude\ i ncl ude- | i nux- cpp. This distribution concerns a

Linux OS target and is only given as material of help. For analysing your code, it is recommended to indicate the
path to the standard headers dedicated to your own compiler.

2 Open the “Pl ease sel ect a fil e”window by using EI button (right of the “denot ut ori al . dsk” label

Release 2007a+ 28/377
Revision 4.2 vA

in the top right of the interface):

. Pleaze select a file

& inchude-Enuc-cpp

!f*.-:pp] st E".t:.:l_1k3 3
[Recirse subdiectones
Source files [-Sources) Directorss to inchde [-)

L] 8| [3]0 &

CPolyvSpace PolySpaceF orCandCPP ExamplesiDemo_Cpp_LongisourcestillC PolySpace PolySpaceF orCandCPPiyerifierinclude nciude-imn-cpp

| ¥

| ok Canced

? Select “<Pol ySpacel nstal | Di r>\ Verifier\include\include-|inux-cpp”, whereanexemplary
of <* mat h. h” > is located for the Li nux OS target.

2 Click on E\ inthe“Directories to include [-1]”section,

“2 Then, select “<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Cpp_Long\ sour ces”, where “t r ai ni ng. h”
is located.

“2 Click on E\ inthe“Directories to include [-1]”section, then close the window using ‘I’
Notes:
1. Other header file needed “zz_util s. h” is also located in same directory.
2. ltis also possible to drag a directory and drop it directly in the “i ncl ude directories [-1] " part
(top left of PolySpace Desktop) without using the “Pl ease sel ect a fil e” window.

In this tutorial, as we have chosen includes of the OS Linux distribution, we have to select a Linux OS target. It
defines a set of predefined compilation flags, known to be default or implicit compile options from cross-compiler
for these platforms:

? Tosetupthe —OS-target Linux option, please type “OS-t ar get ” in the Search internal name from the

. Search internal name from the selected line : OS-target | |]
selected line = - ’c_@_l - top right box -.

“2 Then click on . It will show all options containing “OS- t ar get ” in the set of options part below:

Release 2007a+ 29/377
Revision 4.2 vA

I:Jame Yalue Internal name:
nalysiz options
= General
Sezgion idertifier Mewr Project Lpry
Date 10052006 ~dlate
Authar kil ~authior
Project version 10 Lyerif-version
Exarine effects of scalar assighments b H0R
Keep all intermediate files o] Hieep-al-files
Continue swith the current configuration = | Feontinue-with-existing-host
Cortinue even on an unsupported Linu distribution I Fallovr-unsupportec-linu:
= TargetiCatnpiler
Target processor type IpArC Harget
Cperating =ystem target for Po Linwx HO5-target
Defined Preprocessor Macros [:]-D
Undefined Preprocessar Macros E]-U
Ihclude E]-include
Cammandizeriot to apply to preprocessed fles [I]-post-preprocessing-cnmmand
Compliance with standards
[= PolySpace inner settings
[Specify a Visual kind of main
= Generate & tain using & given class
Class name Mathltilz ~Clazs-analyzer
Analyze anly the given clags D FClazs-only
Functions caled by the generated main defaut Hohass-aralyzer-calls

(¥ Generate & tain using oiven functions

[Stubhing

A zsumptions

[# Cthers

Precizion/Scaling

Multitasking

? Then, click on the [Jf] allowing to chose | i nux OS target out of some predefined Operating System targets in

the list sol ari s, | i nux, vxwor ks, no- pr edef i ned- OSand vi sual .

Note: Associated to chosen Operating System (except no- pr edef i ned- OS), PolySpace dedicates a set of

accurate stubs concerning standard templates and C libraries.

Release 2007a+
Revision 4.2 vA

30/377

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.2.3.2. Progression of the analysis

“2 Click on @ to restart the analysis.

Some results may have already been written in the “C. \ Pol ySpace_Resul t s” directory, because of a

previous click on @ Therefore a window opens to check whether you want to overwrite in this
directory or not:

i@ The directory CiiPolySpace_Resulks already exisks.
L]
Some Files might be overwritten, Do you wank to conkinue 7

[Yes H Mo][Cancel]

In our example, this is what we want to do. Click on , if it happens.

Note: closing the PolySpace Desktop window will not stop the PolySpace analysis. If you wish to stop it, click on

€ stop Execition | (a window of confirmation follows the click). If the window is closed without stopping the
analysis, it continues in background. Opening again PolySpace Desktop with the same project automatically
updates the analysis with its current status.

The progress bar allows following the progress of the analysis:

| i | [| |] (e Jlue Tl

B 24 000312 DOROT 35 0163 Deroa: 3 [oo0a13 Doono OOOG00 COE4E

G compte Log

A progress report may be obtained by clicking on '# for the compilation phase, or

FuLog for the full analysis in the low level window. Click on e to get other pieces of

information about current analysis (list of options, stubbed functions, functions used during main construction,

checks found after each phase, etc.). Click on the icon to refresh the summary.

Release 2007a+ 31/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.3.3. End of the analysis
When the analysis ends, PolySpace proposes to review the results:

IFI-

Message

|~r© YWerification process completed

“2 Click on E and go to section “Step 3” of the tutorial to view the results.
[

Note: You can access the results via the icon in title bar.

Release 2007a+ 32/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3. Step 2: Class Analyzer
PolySpace Class Analyzer analyses applications class by class, even if theses classes are only

partially developed.

Benefits: detecting errors at a very early stage, even if the class is not fully developed, without any test
cases to write. The process is very simple: give the class name (see step 1), and the PolySpace Class
Analyzer will analyze its robustness:

PolySpace will generate a “pseudo” main;

It will call each constructor of the class;

Then it will call each public function from the constructors;

Each parameter will be initialized with full range (i.e. with a random value);
External variables are also defined to random value.

akrwNPE

Note: for PolySpace only prototypes of objects (classes, methods, variables, etc.) are needed to
analyse a given class. All missing code will be automatically stubbed.

As a result, a class will be analyzed by exploring every branch of the methods through all its
constructors (see some restrictions in the associated paragraph).

Related subjects:
2.3.1. Sour cesto be analysed

2.3.2. Architecture of the generated main

2.3.3. Logfile

2.3.4. Characteristics of a class and messages of the log file
2.3.5. Behaviour of Global variables and members

2.3.6. Methods and classes specificities

Release 2007a+ 33/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.1. Sources to be analysed
The sources associated with the analysis normally concern public and protected methods of the class.
However, sources can also come from inherited classes (fathers) or be the sources of other classes
used by the class that is being analysed (friend, etc.).

Release 2007a+ 34/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.2. Architecture of the generated main
PolySpace generates the call to each constructor and method of the class. Each method will be
analyzed with all constructors. Each parameter is initialized to random. However, even if you can have
an idea of the architecture of the generated main in PolySpace Viewer, the main is not real. You can
not reuse and compile it with your analysis or PolySpace.

If we come back to the class “Mat hUt i | s”, analysed in the first step, it contains one constructor, a
destructor and seven public methods. The architecture of the generated main is as follows:

Generating call to constructor: MathUtils:: MathUtils ()
VWil e (random ({

If (random) Generating call to function: Mat hUt i | s: : Poi nter _Arithnetic()
If (random) Generating call to function: Mat hUti | s: : Cl ose_To_Zero()

If (random) Generating call to function: Mat hUt i1 | s: : Mat hUti | s()

If (random) Generating call to function: Mat hUt i | s: : Recursi on_2(int *)

If (random) Generating call to function: Mat hUt i | s: : Recursi on(int *)

If (random) Generating call to function: Mat hUt 11 s: : Non_Infinite_Loop()
If (random) Generating call to function: Mat hUt i | s: : Recur si on_cal | er ()

}
Generating call to destructor: Mat hUti | s:: ~Mat hUti | s()
Note:
1. An ASCI! file representing the “pseudo” main can be seen in C:
\ Pol ySpace Resul t s\ ALL\ SRC\ __pol yspace_nai n. cpp
2. If the class contains more than one constructor, they are called before the

‘whi | e’ statementinan‘if then el se’ statement. From a PolySpace point of view,

this architecture ensures that the analysis will evaluate each function method with every
constructor.

Release 2007a+ 35/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.3. Log file
When analyzing a class, the list of methods used for the main is also given in the log file during the
normalization phase of the C++ analysis.

You can have the details of what will be analyzed in the log. Here is the example concerning the
‘Mat hUt i1 | s’ class and associated log file which can be found at root of the ‘C:

\ Pol ySpace Resul ts™

PR b b b I S P I S b I b b b b b b b P b b P b i b b b b b b b b b b P P P I i I b b b b b b b I b P I I P i b b b b b b b b
* % %

*** Begi nning C++ source normalization

* % %

khkkhkkhhkkhkhhkkhhkhkhhkhkhhhkhhkhkhdhhhhkhhhkhhkhkhkhkhhhkhhkhkhhhkhhkhhkhkhhkhkhhkikkhkikk khhkikhkkkhkx*

Nunber of files : 1
Nunmber of |i nes : 202
Nunber of lines with libraries : 7009

**** C++ source normalization 1 (Loading)

**** Ct++ source normalization 1 (Loading) took 20.8real, 7.9u + 11.4s
(1gc)

***%* Ct++ source normalization 2 (P_INT)

* Cenerating the Main ...

Generating call to function: MathUtils::Pointer Arithnetic()
Generating call to function: MathUtils::C ose_To_Zero()
Generating call to function: MathUtils::MathUtil s()
Generating call to function: MathUils:: Recursion_2(int *)
CGenerating call to function: MathUils:: Recursion(int *)
Generating call to function: MathUtils::Non_Infinite_Loop()
Generating call to function: MathUils::~MathUil s()
Generating call to function: MathUtils:: Recursion_caller()

It may happen that a main is already defined in the files you are analysing. In this case, no other main
will be generated, and this one will be analysed. You will receive this warning:

*** Begi nni ng C++ source normalization

* Warning: a main procedure already exists.
* No main will be generated: the existing one will be used

Note: The main will be analysed even if it does not concern the class given to the —cl ass-
anal yzer option.

Release 2007a+ 36/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.4. Characteristics of a class and messages of the log file
The log file may contain some error messages concerning the class to analyze. Theses messages
appear when characteristics of class are not respected:

It is not possible to analyze a class which does not exist in the given sources. The analysis will
stop with the following message:

@Jser Program Error: Argunment of option -class-anal yzer nust be defined :
<name>.
Pl ease correct the programand restart the verifier.

It is not possible to analyze a class which only contains declarations without code. The
analysis will stop with the following message:

@Jser Program Error: Argunment of option -class-anal yzer nust contain at
| east one function : <name>.
Pl ease correct the programand restart the verifier.

Release 2007a+ 37/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents

2.3.5. Behaviour of Global variables and members

. Global variables

In a class analysis, global variables are not considered as following ANSI Standard anymore. if they
are defined and but not initialized. Remember that ANSI Standard considers, by default, that global

variables are initialized to zero.

In a class analysis, global variables do not follow standard behaviour:

» Defined variables: they are initialized to random. Then they follow the data flow of the code to

analyse.

» Initialized variables: they are used with the initialized value. Then they follow the data flow of

the code to analyse.

» Extern variables: the analysis will stop. To continue the analysis, it is mandatory to use the —

al | ow undef - vari abl e option. In doing so, external variables follow the behaviour of a defined

variable.

An example below shows behaviour of two global variables:

Release 2007a+
Revision 4.2 vA

1

2 extern int fround(float fx);

3

4 /1 gl obal variabl es

5 i nt gl obvar1;

6 I nt globvar2 = 100;

5

8 cl ass Location

9 {

10 private:

11 voi d cal cul ate_new(voi d);

12 int Xx;

13

14 publi c:

15 /'l constructor 1

16 (int intx = 0) { = ; };
17 /'l constructor 2

18 (float fx) { = fround)}
19

20 setx(int intx) { = ; calcul ate_new();
21 fsetx(float fx) {

22 I nt = fround);

23 it (= 0) // ZDV check is orange

}i

38/377

24 {

25 tx = ; [/ ZDV check is green

26 set x);

27 }

28 1

29 b
In this example, gl obavar 1 is defined but not initialized (see line 5): the check ZDV is at line
23. On the other hand, gl obvar 2 is initialized to 100 (see line 6). The ZDV check is at line 25.

. Data members of other classes

When analysing a specific class, variable members of other classes, even members of parent classes,
are considered as initialized. They follow the following behaviour:

1. They are considered as may be not initialized (unproven check NIV), if constructor of the
class is not defined. So they are assigned to full range and then, they follow the data flow of the
code to analyse.

2. They are considered as initialized to the value defined in the constructor, if the constructor
of the class is defined in the class and given to the analysis. If —cl ass- onl y option is used, it

just like definition of constructor is missing (see item 1). Then they follow the data flow of the
code to analyse.

3. They could be checked as run-time error, if and only if, the constructor is defined and does
not initialize the considered member.

An example below shows the result of the analysis of the class Mydl ass. It shows behaviour of a
variable member of the class O her Cl ass given without definition of its constructor:

cl ass O herd ass
{
pr ot ect ed:
int x;
O herd ass (int intx); /1l code is m ssing
publ i c:
get Menber (void) {return x;}; // NV is warning
¥
class MyC ass
{
QO herd ass m | oc;
publ i c:
(int intx) : mloc(0) {};
showvoi d) {
int wx, W ;
wx = m| oc. get Menber();
W = wx* + 2; I/ Possible overflows because O herd ass
/'l menber is assigned to full range
3
}

In the example above, variable member of O her Cl ass is checked initialized to random: the check is

Release 2007a+ 39/377
Revision 4.2 vA

at line 7 and there are possible overflows at line 17 because range of the return value wx is full
range in the type definition.

Release 2007a+ 40/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.6. Methods and classes specificities

« Template
A template class can be not analysed alone. Only instance of a template will be considered as the
class that can be analysed with the PolySpace Class Analyzer.
tenpl ate<class T, class Z> class A{ ...}
In the example abowe, we want to analyse template class A with two class parameters T and Z. For
that, we have to define a “t ypedef ” to create a specialisation of the template, with a specific
specialisation for T and Z. In the example below, T represents ai nt and Z a doubl e:

tenplate class A<int, doubl e>; /1l Explicit specialisation
typedef class A<int, double> ny_tenplate;

nmy_t enpat e is used as parameter of —cl ass- anal yzer option, to analyse the this instance of
template A.

 Abstract classes
In the real world an instance of an abstract class can not be created, so it can not be analysed.
However, it is easy to analyse by “removing” the pure declarations. For example, in an abstract class
definition change:
voi d abstract _func () = 0; byvoid abstract _func ();
If an abstract class is given to analyse, the class analyzer will make the change automatically and the
virtual pure function (in the example above abst ract _func) will then be ignored in the analysis of
the abstract class.
This means that no call will be made from the generated main, so function is purely ignored. Moreover,
if the function is called by another one, the pure virtual function will be stubbed and an orange check
will be put on the call: “cal | of virtual function [f] may be pure”.

» Static classes
If a class defines static methods, they are called in the generated main as a classical one.

. Inherited classes
When a function is not defined in a derived class, even if it is visible because inherited from a father’s
class, it is not called in the generated class. In the example below, the class Point derives from the
class Location:

cl ass Location
{
pr ot ect ed:
I nt Xx;
int vy;
Location (int intx, int inty);
publ i c:

Release 2007a+ 41/377
Revision 4.2 vA

int getx(void) {return x;};
Int gety(void) {return vy;};
}
cl ass Point : public Location
{
pr ot ect ed:
bool vi sible;
public :
Point(int intx, int inty) : Location (intx, inty)
{
visible = fal se;
b
void show(void) { visible = true;};
voi d hide(void) { visible = false;};
bool isvisible(void) {return visible;};
}

Since the two methods Locat i on: : get x and Locat i on: : gety are “visible” for derivated classes,
the generated main does not include theses methods when analyzing the class Poi nt . No matter
because, we have to analyse the Locat i on class

However, inherited members are considered as volatile if there are not explicitly initialized in the
father’s constructors. In the example above, the use of the two members Locat i on: : x and

Locati on: :y will be considered as volatile. Indeed, if we analyse the above example in the current
state, the method Locati on: : Locat i on (constructor) will be stubbed.

Release 2007a+ 42/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4. Step 3: PolySpace Viewer - Exploration of results

This step illustrates how to explore analysis results that were generated by either the PolySpace Client
or the PolySpace Server. We review the results of the analysis of “t r ai ni ng. cpp” performed during

Step 1.
PolySpace Viewer
Shartout
2| 2 KB

If the OK button has been clicked at the end of the analysis during Step 1, PolySpace Viewer
automatically opens results.

Related subjects:
2.4.1. Modes of operation

2.4.2. Downlaod resultsinto the Viewer

2.4.3. Analysing of PolySpaceresults (“training.cpp”)
2.4.4. Methodological asssitant

2.4.5. Report Generation

Release 2007a+ 43/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.4.1. Modes of operation

The first time The PolySpace Viewer is opened, a sub-window will appear after the splash screen of the
viewer. It is aimed to warn user about different modes of operation. User has to choose between
launching the Viewer in an “expert” mode or in an “assistant” mode.

& New feature

Please select. ..

The Viewer has two modes of operation.
Chooze between:

- The new review assistant wizard,

- Or the expert Viewer mode.

The resriew azsistant helps you to zelect and manage the checlcs to
he resiewed.

Fou will be able to zelect the munber of checks to be reviewed and
the "best" subset will be sorted out for you by Polyapace. The
Wiewer will then ouide you through these selected checles.

Do nat display this meszage again

Expert mode | | Azziztant mode

The mode will define the reviewing process of checks highlighted during an analysis:
. In"Expert node”: The Viewer is opened in a mode where all checks can be seen. The

number, the order and the categories of checks can be reviewed can be chosen by the user

himself (See next section).
In “Assi st ant node”: the reviewing rules for a C++ analysis results follows a methodology

selected by PolySpace. It concerns the “best” subset of checks sorted out for user. The
PolySpace Viewer will then guide user through these selected checks.

“2 For the need of this tutorial, please untick “Do not di splay this nmessage agai n” and then
click on “Expert node”.

Release 2007a+ 44/377
Revision 4.2 vA

Note: Even if the user has chosen one mode it is easy in one click to change the mode inside the
PolySpace Viewer.

Release 2007a+ 45/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.4.2. Downlaod results into the Viewer

After having clicked on “Expert node” the PolySpace Viewer window looks like the figure below:

M P e e

[W B = § =N -

Ea———

It

]

ERY
-

ks s

PonSpace

TECEROLOGINY

l"l'lP":

v i e i Sy e Sy S oy i e

“2 Click fil e>open to load result files. If you did not perform the analysis, you can still review the

results by opening the following file:
<Pol ySpace Install Directory>\Exanpl es\ Deno_CPP_Long

\ RTE px_ @2 _Deno_Cpp_Long LAST RESULTS.rte. We will focus on“trai ni ng. cpp”
Procedural entity.

“2 Using the “Fi | e>Open” menu, select the following file located in “C: \ Pol ySpace_Resul t s”.

Release 2007a+ 46/377
Revision 4.2 vA

B Please select a file

Lodkt i ,_'] P-i'!ﬂ_Epac:e_ijs

£ ALL
i—b) PobySpace-Doc
My Recent RTE_p0_02_Cordrol_Data_Flow _Anabesis rie
Documents N ptE ot 02 Safety_Analysis_Level_1 rte
o fid RTE_p2_02_Satety_ansiysis_Level 2 rte
La Fid RTE_p3_02_Satety_Analysic_Lavel_3 e
Deskop [igd RTE_ps_02_Satety_analysis_Level_d.rte

3 02 Mew Propect LAST RESULTS e

2
8

My Compiser

e

Pleces

Files of lype: |+ p1a

File name: 'E;px,dzmﬁmmﬁéfﬁfﬁﬂ-ﬁﬂc
~

“2 Then click on to proceed with further steps

Note: The RTE px_(2_ <Proj ect Nane> LAST RESULTS. rt e is a sort of “link” on the best

analysis in term of precision. This analysis is represented by

RTE p4_O2_Safety_ Anal ysis_Level 4.rte file. Lower level files represent lower precision

analysis.

Release 2007a+
Revision 4.2 vA

47/377

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.4.3. Analysing of PolySpace results (“training.cpp”)

After loading the results, PolySpace Viewer window looks like below:

PonSpace

TECHNOLOGIES

[0
cnes

Prising tt n comevane

1. On the left is the run-time error view (or RTE View). It displays the list of files analyzed in
the “Procedural entities”column.

2. Inthe bottom right area is the source code view with coloured instructions. Each
operation checked is displayed using meaningful colour scheme and related diagnostic:

* Red: Errors which occur at every execution.
 Orange: Warning — an error may occurs sometimes.
e Grey: Shows unreachable code.

. : Error condition that will never occur.

3. Thetwo W|ndows just below the tool bar concern details of a currently reviewed check
(when the check has been selected):

Coding rexview progress Count | Pro...|
Mo check selected W] W] T
: : OE|
b revieswed §nb to review] W] L
Softweare relisbilty indicator nfa i3

4. The top right area is used for displaying both control and data flow results. You can
switch from one view to the other by using the “W ndows” menu:

Release 2007a+ 48/377

Revision 4.2 vA

i~

B PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_Mew_Froject_LAST_RESULTS. .rte

File Edit Mindows Help

= Reorganize deskiops Chrl+R, 1| 3 T ' B
Jrganize '-.-'igél.-ils desktop] Wertically '
E m
é" 1l Jrganize Code sources deskibop] Switch ko Yariables view COR

% Gamng Filter

SHF

: ' Switch to Call Tree wiew
Procedural entities f | x1 \"? 1 ?j—am———ﬁw—ﬂmmﬂgﬁew_

Related subjects:
24.3.1. RTE view

2.4.3.2. Coloursin the Sour ce code view
2.4.3.3. More examples of run-timeerrors
2.4.3.4. Advanced results exploration
2.4.3.5. C++ specific checks

2.4.3.6. Miscellaneous

Release 2007a+
Revision 4.2 vA

49/377

y Q: HNOLOGIES
Previous Back to table of contents Next

2.4.3.1. RTE view

Each file and underlying functions in the “Procedural entities” view or Run-time Errors view (RTE) is colorized
according to the most critical error found:

* exception. stdh. This file contains no check. This file contains stubs of the <excepti on>
template part of the standard stl library. This template stubs is an accurate representation of the initial

template provided by PolySpace. All templates of standard library have been stubbed to speed up
analyses.

 new. st dh. This file contains no check. This file contains implemented stubs of <new> part of stl
library template.

. contains the main which was automatically generated. All checks there
are no run-time error (or RTE) has been found. Please note that the pseudo code in this file is only
here to give information about the generated main. It must not be analysed with PolySpace.

e training.cpp. This file is red. This is the famous “training.cpp” containing the analysed Class

“Mat hUt i | s”. One or more definite run-time errors have been found in it.

. . This file is the famous “training.h”, locale header included in “training.cpp”. All checks
are no run-time error (or RTE) has been found.

e _ polyspace_stdstubs. c. It contains stubs of standard functions part of | i bc library used in
training.cpp. This file contains no check.

* _ polyspace__stdstubscpp. cpp. It contains stubs of some standard functions part of the stl

library used in t r ai ni ng. cpp. This file contains no check.

2 Click once on the = left of “t r ai ni ng. cpp” to find out more about this file. “training.cpp” is expanded and the
list of function members defined within “Mat hUt i | s” of “t r ai ni ng. cpp” is displayed. The function members in
red or grey have code sections that need to be inspected (Mat hUti | s:: Poi nter _Arithnetic(),

Mat hUti |l s:: Recursion_caller(), etc.)first because they are definite diagnosis of PolySpace (either
runtime errors or dead code).

Release 2007a+ 50/377
Revision 4.2 vA

.I'-:-'-|‘||u-|| Viewer - L 'Puiptpar Ssastiy#®I10_gn 0T Bk Feajeci _LART_HIBA T ris

] W . o W @ 1 e " v _'- o g
W o T - S e o wt ow o om e JE e e o I e s o om e owm
el v R Canark o :
pruc. ol s e v |y i
e e (i v] e
Fitems ey ks e rvm
P it ol WETE 1B IJ | .
P 1 W7
L2k e Prjoct i] JE— T
=
1 N i gihopas man iofraiacs RN
- i = < = =
i1} 1 B] L = Bl
St I L]
__pohnparr__ didalgn r o 1 _PONERE Lifud by ¥
e ST L
PR F PR S S5 o 1 PO [L

¥ SRR 1] 1 [o= -k
sy me Ly
s A 1] 1 i B,

PonSpace

TECHNOLOGIES

CI'IE

Wiy U @ erven aded

The columns (_] _J _J _J _J) provide information about run-time errors found in each function:
e The _J column indicates the selectivity (level of proof),
» The lJ column indicates the number of definite run-time errors or reds,

e The i] column indicates the number of warnings or oranges (that may hide run-time errors that do
not occur systematically),

* The i] column indicates the number of safe operations or greens

* The EJ column indicates the number of unreachable instructions or grey code sections.

Let's have a look at some error found by PolySpace in “t r ai ni ng. cpp”.

First example of runtime error found by PolySpace: Memory Corruption

“2 Click on @ to expand “Mat hUt i | s:: Poi nter Arithmetic()“tofind out more about the red error. It

displays a list of red, green, and orange symbols, featuring the complete list of code areas that PolySpace
checked within the “Mat hUt i | s: : Poi nter _Arithnetic()” function.

Release 2007a+

51/377
Revision 4.2 vA

Procedural entities
|55 Mew Project
H polyspace main cpp
= training.cpp
H Mathitls: Close To Zerof)

)

Mathliils::Non_Infinite_ Loopi)
= Mathltils:: Pointer Arthmetici)

v EXC.0

WA

v L2

v ML S

v V0DA 4

o UvELD

¥ LINFL .G

w MNPV

v |[OP 8

w MNP .S

' EXC10

w MRT 1

v NP2

/58

VDA 14

wEXCAE

' MNT 16

“2 Click on the red “I DP. 13" item - which stands for lllegal De-referenced Pointer -, to precisely locate this error

in the source code. The bottom right section is updated showing the location of the “I DP. 13" item.

Release 2007a+
Revision 4.2 vA

52/377

B Polyipace ¥irwer - € WPodyspace ResslisARTE pax OF Mew Frojeci LAST _RESULTS rie

[Gen Took pranss i
o W o « o Wow 1 a1 5" T i w —
u F & 5N - B BER o wr owr w e mm oem o B owr o o e o= s owm ow
[——— Gkl e 7 ey oy | e B i e
0 iy 1 gy [0 -t o Ve W
b i e (Pl] o ® g =) aex wf bBaunde
e |
1
-
I r
Fiondl - s l¥ |+ |
L bemm Frope! i
o]
[
1
[EF T]
-
v
-
]
]
i~
r T & i, randem_Gnt
L Lf du. randos_i1ht = | i = 1f
; 8
'- T LE ik =10
il i N
3 T
BO o Fafs ypoincay sooe
.
ik
[LH
-l n -
] ¥ i L]
.trlr||n

“2 Click on red symbol in the source code at line 72. An error message is opened with the exact location:

=,

| training MathUtits: Point .. |~ (/&3

n training.cpp” ine 72 column S
aurce code

| *v o= &; Af Duat of bounds

I "

rror : pointer is outside itz bounds

ointer iz initialized

Pointer p is de-referenced outside of its bounds. Indeed, at the line 72 the instruction “*p = 5; ” corrupts the
memory as it puts the value “5” outside of the array “t ab” pointed to by the pointer “p”.

“2 You can also see the calling sequence leading to that particular red code section. To do so, select “IDP.13”

item in the “Pr ocedur al entiti es” column in the RTE View, and then click on the :’? icon (on the top left of
the PolySpace Viewer window) to display the corresponding run-time error access graph:

Release 2007a+ 53/377
Revision 4.2 vA

B Error call graph for training. MathUtils::Pointer_Arithmetic().IDP.13 - PolySpace Viewer

__ polyspass male. opp LERLRESG. CED £Ealnang, S
BALT Hathlrils:: Pornesr AELThmeric|) IDF.13
Release 2007a+ 54/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4.3.2. Colours in the Source code view

Each operation checked is also displayed using meaningful colour scheme and related diagnostic in
the source code view as links:

* Red: A link to the error message associated to the error which occurs at every execution.
e Orange: Alink to an unproven message — an error may occur sometimes.

e Grey: A link to a check shown as unreachable code. The error message is in grey.

. : A link to a VOA (Value on Assignment) or an error condition that will never occur in

the list of verifications made by PolySpace.

 Black: represents some comments, source code that does not contain any operation to be

checked by PolySpace in terms of run-time errors and optimized operations, e.g. x = 0;
» Blue: text highlighting the keyword “pr ocedur e” and “f uncti on”.
* Underligned blue: A link to a global variable in the “Global variable View”.

Release 2007a+ 55/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4.3.3. More examples of run-time errors
Unlike most other testing techniques, PolySpace provides the benefit of finding the exact location of
run-time errors in the source code. Below are some examples that you can review with PolySpace
Viewer.

Example: Non-Infinite loop

“2 Select“Mat hUti | s: Non_ I nfinite_Loop()”inthe “Procedural entities” column in RTE View.
The function is fully green: it means that the locale variable x never overflows, even if the exi t
condition of loop deals with y that is smaller than x. PolySpace confirms that the function always
terminates.

- training.cpp [;]

38

35 int MathUtils::Hen Infinite Loop ()

40 |

41 const int big = 1073741821 ; /F/ 2**30-3 =
42 int =x=0, v=0;

43

44 while (1 == 1)

45 {
46

477

48

49 !
50

Sk vio= ® S 108

|_I-
|_|.I

big) break;
23
2

i
I

g e

[|

}<
Il

b return v;:
20 }
ot

Note: using —voa option at launching time, PolySpace can help more suitably by giving information of
range on scalar assignment.

Release 2007a+ 56/377
Revision 4.2 vA

Other unreachable code

We can also see in the “Procedural entities” column that some function members are never called. It is
materialised by a reverse video in grey:

Procedural entities
[+l B Pr I:Ij ect

_polyspace _main.cpp

[training.h
= training .cpp
E MathlUtils::Non_Infinite_Loop()

&

MathUtils:: Recursion_2(int)

3

=l

hathltils:: Recursion_caller()

&

MathUtils:: Pointer_Arithmetic()

H MathUtils: Close _To Zerof)

H
T
>

pil

RTE: test()
Square;:Square_Root()
aquare: Sguare Foot comv(float float™)
Square:;Unreachable_Code()

polyspace_ stdstubs.c

__polyspace_ stdstubscpp.cpp

+ exception.stdh

new . stdh

In the figure above it is the case for all public and protect member functions of “Squar e” and “RTE”
classes. Indeed, the PolySpace analysis was made for the class “Mat hUt i | s”.

Release 2007a+ 57/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
2.4.3.4. Advanced results exploration
You can filter the information provided by PolySpace to focus on the type of errors you wish to investigate.
. L Apha | Bets| [Gases . . Gamna
There are pre-defined composite filters ,.—_land!___Ithat you can choose depending on your development process. Click on the | button to

get all the “red” and “grey” code sections. It is mainly used during the earliest development stages to focus quickly on critical bugs. Theses filters are

accessible through a combo list:
B PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project_LAST_RESULTS.rte

File Ect Tools Windows Help

=0 | ¥y o W oew | LT -r:_" Alphg % 00 Aasitant
K"-"*-"":f o Tov MY SR oy con mw o r BN ok ee Do B miET Wc WL e o vos
Ciplrey e RS E Court | Pro. 1 Mo check currently selecied
Mo chsck seiected L Filber al
riks niriiereed | rl B rerviere i) na Nt n_l;lmd:.l
Softwere relabily indcals L ol | .

“2 To illustrate the use of these filters, we will focus on the Pointer arithmetic member function that we have examined in a previous section. Click on

m to reduce the information checks related to “Mat hUti | s: : Poi nter _Arithmetic()”.

B Mathitils Painter_Arithmetic()
v WOA
v \OAd
} DP 13
- v VOA 1
Release 2007a+

Revision 4.2 vA

58/377

This list of acronyms - for type of operations checked - shows what PolySpace automatically analyzed for you. In the case of member function is an
illegal dereference pointer error (IDP.13).
Note: check (Value On Assignment) is only informative check that are never hidden.

The | =/ level highlights checks that could cause a processor halt, memory corruptions or overflows.

2 Click on || mode which is the default mode. Select again “Mat hUti | s:: Poi nter Arithnmetic()”inthe “Procedural entities” view and then,
click on = to get the list of the checks.

= MathUtils: Pointer_Arithmetic{)
v EXC.0
il J .___,. b

.

'-L

“« A

f IDP.13

“ S S

4

- . . flgh . .
To get the comprehensive list of operations checked by PolySpace, you can switch to " mode. You may also want to use filters to focus on particular

Release C@t@gories of errors. Those filters are located at the top of the PolySpace Viewer window: 59/377
Revision 4.2 vA

M PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project_LAST_RESULTS.rte

File Edit Took Windows Help
oW o o oA E e 1 e F]

BN uie g p g-'ﬂnwr WTC NTL s W A

X 3 v 5 4 ea zoy MIE PR op gy me cer con pow row NIV
Coding review FEOgress Court Pro..[§ Mo check currently seiscted
ETRCK S e L Filter disabled. Click to hide this-pointer of function is not null Checks]
mreﬂwﬁdrmtnrmw{ntu} nia 1__|-'|.ﬂ =
Sofwans relshilty indcalor e s -
O &

Note: When the mouse pointer moves on the filter, a tool tips gives its deflnltlon

:FIH-r
“2 Click on|_*" | (top of the window) to suppress all checks and click on | _w_ You will get list of checks containing only IDP (lllegal Dereference

Pointers) reds, or greens:

= MathlUtils: Pointer Arithmetic()
+ |DP.8
t IDP.14
T 1BR:73
« |BP:33

Note that clicking on! _"_ (top of the window) and on the filter “VOA” to suppress green code sections, you will get a reduced list of checks reds,
and grays:

= MathUtils:: Pointer Arithmetic()

¥ IDP.14
? |I I ...-.'_

60/377

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4.3.5. C++ specific checks
Specific C++ checks are dispatched in five categories:

HNT .
1. NNT category or Non Null This pointer (____). It checks t hi s pointer validity.

PP |
2. CPP category. It concerns C++ related constructions (), like positive array size

verification, dynam c_cast, and t ypei d.

ululsy

3. OOP category. It concerns all C++ object oriented verification (____): inheritance and
virtual calls.

- - - - - E:-:E .
4. EXC category. It concerns all C++ constructions dealing with exceptions ().

5. INF category. It concerns information about C++ implicit and called functions when

INF .
dealing with virtual functions ().

When reviewing C++ code with PolySpace Viewer, it is important to have a selective review check by
check which follows the list of categories located at the top of the PolySpace Viewer window. Checks
are classified from the left to the right. It is important to begin a review following this order. It is also
important to begin by C “like” checks before C++ like “checks”.

This methodology permits to focus first by the categories which are most susceptible to hide run time
errors. This methodology has been automatically applied in the “Methodological assistant”.

Release 2007a+ 61/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
2.4.3.6. Miscellaneous
)
The @ icon gives access to the PolySpace Manual. All views have a pop-up menu (right click on
mouse).

“? Close the PolySpace Viewer window by clicking on the upper right ﬂ symbol (PolySpace Viewer
can also be closed using “Fi | e>Cl ose”).

Release 2007a+

62/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

2.4.4. Methodological asssitant

After a first navigation into the PolySpace Viewer, some simple questions remain:
. Do all checks need be reviewed?
. What are the checks to review?
. How many?

. What is the best order?
The Methodological assistant is here to answer to all theses questions: It helps to select and manage the checks to be

reviewed. It selects a “best” subset and sorts out them. The Assistant mode in the PolySpace Viewer will then guide
through these selected checks.

2 If the PolySpace Viewer is still open, close it and open it again, load same results and chose “Assi st ant ” mode.
After having loaded the results in “Assi st ant " mode, PolySpace Viewer window looks like below:

H PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_Hew_Project_LAST _RESULTS.rte
Fis Edf Tooh Windees Hep

o W w1 e T R
T -, Ossoviea 6 4% 2 0
CRxing 1w DR Count | Pro., '-“unrl-a-cn []
i craci nekeoied s ein
i vl Tl B Pl (1) [
i robalallly Wl Fon rem -
¥ I o W ¥
P e s 0Tl K |Peve_ Col | Lre = ‘ﬂlTﬂﬂ.l ,!,w
s — Lot
100 (]
= ::lld:l (]
H IrEhieg Cpp 100 3| by i}
o ek CALEL T 4|

__DONSECE_ MSIuDa o e s i*
__DONARaCE_ SIISINDACDp Cpe
£ __ PONIEGCE_MEN (e

¥ Tafig B

(7 e i Werrla By

o o o B
e . o |

TECHNOLOGIES

PonSpace

partmership with
l'."'l"'IFl"-'i 3

| -'Wﬂr\-uﬁ:nrl:mmw

Related subjects:
2.4.4.1. Assistant dashboard

2.4.4.2. Choose a methodological assistant

Release 2007a+ 63/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.4.4.1. Assistant dashboard

The second line of buttons on the toolbar and the two views just below are the navigation centre based on the methodological method
used in the assistant mode:

I ¢ ———, Dot € E S 3B P

SO PRV PEOEELa ok Frog : ha sheck oorenlly galacied
ek sesslsd .M IM

reriensd i ik o ey (rila)
vt [ehallly wrlalol

i rén
nia e

mt]

=

Some other changes can be seen in the viewer:
1. Now, in the “Procedural Entities” view the list of files analyzed is sorted by the methodological assistant used.
2. Inthe bottom right area is the source code view with coloured instructions. Each operation will be checked and sorted by
the methodological method using meaningful colour scheme and related diagnostic and in the following order:

¢ Red: Assistant browses all errors which occur at every execution.

e Gray: Assistant browses each block of unreachable code depending if radio button “Ski p gray checks”

has been ticked or not.

¢« Orange: Assistant chooses and reviews the “best” unproven operations —errors that may occur sometimes.
“2 Click on .to navigate to next check.

The PolySpace Viewer has been refreshed with the first check selected by the Methodology of review:

H PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_MNew_Project_LAST _RESULTS.rte
Fie Ede Tock Windesn Hal
B oo AR e 1 e O
Liath by b L W] iy gy anisia " ¥ B e P
1 2 1
Codine |verA PrograTe Cout Progr.. " W op f airdie Porssr_aatreeon | (e T soomen §
iy O parvirresd |l I 1 e (] i L _»
T g pre——) o | [l ¥ = 5i /S Out of bounds
M iy W B Lol L] —
| -
Ercor pointer is outwmide ite bounds
g -
P ST = 1 l_:-.-‘,_-,-!: %] e '-c-“ Trea Viaw
Fropt 78 (1 —1 =
j-h'-!“_ Oy and by L3 : Wariabies Camsy
raneg cpp i m..:;h. ;I ;m 11 trasning Mathion Fointer_ b
= WML POVEeT_ArTranes] | - N R v, I bt ii» i 1 __pohspsce msn msn
+ LF Poimriaty Wil by 0 | ¥ q B
4 :
. b training.cpp
o
1]
T8 " "
61 odd MathUtile:: Pointer_Arithmetic ()
WinrL e Cinss_To_ 2o} o 62 i
MMFLEE Non_infinge_Loopd) o 63 Utils ui
MBI PR uron_r) o 6_4
65 int tab|l00):
Marv i Rrecursion_tale) o L1 int i, "p = tab;
RITE: Ameit) o L
Sepaare Souarn_Rootl) o Ll for(i = B a-< LOB: iss, ph4)
a9 g = 0
Sepupen Soparn Fo0T_ o oSLNoe) o 0 L
Souire Urveachatie_Cooe() v 71 if{u.candom_int () == 0)
£ __polapocE_ acuiubs o T2 *p = b £f out of Bounda
b
* __pohapacs Sotlubdopp opg o -)
. T4 = u.candosm_int ():
" —POlyIRbce_Man. (e 5 if (u.candem_int (D) Tir=i) = 1
raning R o Té
7 if (Dl &k 1€=100) o
4 3| W% *
C | Mew Projact Enuce B bainingipe buningepn Lne 72 Commd

The Methodological dashboard gives details and allows reviewing the check. On the selected check, it is possible to mark the fact that it
has been reviewed.

Release 2007a+ 64/377
Revision 4.2 vA

“2 Tick the radio button box and type an associated comment in the associated edit box on the right

After, it looks like:
Tl b e oy T G- v p— lapuycteds M £ B W gen P
(2 5

Coxiing revvEny pIGORasS ot Prosy. Y iy cpp J Wi Ria Poinbsy s ithwsebiog) Siee 72 5 ookaren §

i K8 ravesrwoned | b D J rereirw (Fiel) an [of

il Piretsveed | il b deriEve [Fgd oA it *Bp o= 5 ff Out of bounds

CSeare (ebabdly ralcalon mae o

mjl
a

ni £t bounds

Ertor { poaintetr 18 SubtEide
kL

o
-

The left part of the dashboard has been updated, and displays some statistics in three lines
. The first line gives the number and percentage of remaining checks to review of the current category. In the previous example, it

concerns red IDP checks.

. The second line gives values in the colour category (red, and).
. Last line gives in permanence the Sof tware reliability indicator.
and going to next

Other buttons in the Methodological dash board allow navigating to previous check, coming back to current one

P 4
/ previous category selected by the Methodology.

Release 2007a+
Revision 4.2 vA

65/377

y Qﬁ HHOLOGIES
Previous Back to table of contents Next

2.4.4.2. Choose a methodological assistant

EMethndnlngy for C++ b
hMethodology for Ada
hMethodology for C

fMethodaola g far C++

Some methodologies [Methedelegy for Model Bazed Designed | 5n(gssociated levels

|
<

1 2 1 have been pre-selected by PolySpace.
The methodology allows selecting the categories of checks to review, the number for each category
and their order depending of a statistical algorithm.
The level (or criterion) defines the number of checks to review by category. Explicit name have been
associated to each criterion like “Fr esh code”, “Unit test” and “Code revi ew
It is possible to refine a self created one or define its own Methodology. The “Pr ef er ences

Pol ySpace Vi ewer >Assi st ant met hodol ogy” Tab is accessible from the “Edi t ” menu.

Release 2007a+ 66/377
Revision 4.2 vA

You can create a new configuration set and define for each criterion what will be the categories of

Thiz configuration menu aliows the definion of

Tools Merws | Tobie opbors | Tookaes oplions | Miscellaneoys || Aszistont configuration

by Of chacks [0 reviss

difierent configurations for wse by resuls Corllarion 1 Crienon 2 Crbenion 3
revienw assiont Coenmin
I sl o
0 Creation ol & new configuraion Sef,
o Do Thrallacrs o Hrels s T0r 1hed thees
cifferent review Crbenia (used 85 tool tigs of SOMAL
then ahcier), COR
o Dredindion o tree mecdmum number of checks o PO
b reviewed for each calsgory, This can be; Y
- & posiive rumber up o 95 FLOMFL
= T woord &l (or Al or ALL)Y 1o Selact o o
fhes checks
- The word o (or Aulo of AUTO) for sutomatic | ¢ g Cas orty
ChosCi b (A0 ondy')
O
jol 3
e
i I
o onty
Ry |
Cas oriy
Configaration e T
Medhoology for Cre W Pp
FRY
Qa0 |
Fienvisre treshiold Crienon ExC |
Cribsion 1 Ads anty
Criterion 2 T
e EXCP |
Lo« J| meew || cones

check to review and how many in each one.

Note: This is not possible to refine an existing configuration except by duplication and refinement.

Release 2007a+
Revision 4.2 vA

67/377

y QE HMOLOGIES
Previous Back to table of contents Next

2.4.5. Report Generation

When PolySpace performs an analysis, it generates textual files that can be used to generate Excel® reports.
Note: Excel® report is an option of PolySpace Desktop and Verifier only available under license. If you do not
currently have a license and would like to learn more about it, please contact your PolySpace representative (or
http://www.polyspace.com/contact.htm).

These files are located in the results directory (See "C. \ Pol ySpace_Resul t s\ Pol ySpace- Doc* or
“<Pol ySpacel nst al | D r >\ Exanpl es\ Denpo_CPP\ Pol ySpace- Doc”). All views (except source code) are
printable and can be exported to textual or Excel® format.

The "C:. \ Pol ySpace_Resul t s\ Pol ySpace- Doc* directory should contain the following files:

& C:\PolySpace_Resulis\PolySpace-Doc
File Edit ‘iew Favorites Tools Help

@E‘Hk v ? j-:EWCh i Falders a | X q

Adiress || Polyspace-Doc
Mame = Size Type Date Modified

=| New_Project_Call_Tree 3KB Text Doourment S/9jZ007 2115 FPM
=) Mew_Project_RTE_View 14¥B Text Document 5/9/2007 2:15 PM
--'_| hew_Project_Variable View 1B Text Docurent SM/2007 2:15PM
§|MSW_F'Fnnct-NGM-ECALPR-ThELE-APPENDIK OKB PS5 Fie 5912007 2:13FM
= PalySpace_Macros 195 KB LS File 5/9/2007 2;15 PM

2 Open the file called “Pol ySpace_ Macr os. x| s”, enable macros when asked and then the following window
opens:

Release 2007a+ 68/377
Revision 4.2 vA

| A B C O E E (5 H

1

7 Copyright @ Polyspace Technologies, 1999-2006

3

4 apply Filkers? Generate checks by file?
5

5 “ Mo filters * yes

; ©" Beta filters ™ ho

5

10 Help \ llse this button to create the complete synthesis in one file. Help
=elect the RTE export view and afile in which to save results.

::; If the other views are in the same directory as the RTE view

e then they will automatically be incarporated into the same file.

14 Generate PolySpace Results Synthesis |

15

15

17 Reports can be generated from all PolyEpace ti file format results. These are generated
18 by the PolySpace Verifier during an analvsis, the export option in the PolvSpace Viewaer,
19 of frorm the command line using the "gen-excel-files” command.

20

21 Individual PolySpace text result files can be processed using the below macros:
22 |

23 The macros are:

24 BTE Apply ta RTE views exported from FolySpace Wiewer

a5 all Tree Apply to Call Tree views exported from FolySpace Yiewer
9 A e Apply ta Yariable views exparted from PaolySpace Viewer
2 S

20

e “ersion 3.4.10 RTE = Run Time Errar

30

> Generate PolySpace Results Synthesis _ _
< Click on . A file browser opens. Select the file called

“New_Proj ect RTE Vi ew. t xt ” as shown below:

Release 2007a+ 69/377
Revision 4.2 vA

Select a RTE View text file

Regarder dans : Ilifl PolySpace-Doc _:_] e e - Outils =
| - =] Mew_Project_Call_Tree.t:t

_. Qﬁ I ElMewe Project RTE_View bt

Histarique =] MNew_Project_Variable_‘iew. b

L -.'4.':}{“_

| Mes documents

Mom de Fichier : |

Cvrir

Favoris réseau Tvpe de Fichiers :]Te:-:l: Files [*,kxt)

annuler

After a few seconds, an Excel® file is generated. It contains several spreadsheets related to the application
analyzed.

i Application Call Tree / Shared Gobals [Giobal Data Dictionary /| Checks by fle / Check Syrthess [/ Launching Options / RTE ~> Al chedis location / Orange 01

For example, in “Checks Synt hesi s” all statistics about checks and colors are reported in a summary table.

Release 2007a+ 70/377
Revision 4.2 vA

A B ICIBlE|F| &

1 RTE Statistics

2 Check category Check detail R O Gy % proved
_3 |0BAI Out of Bounds Array Index 0100 0.00%
4 MIVL Uninitialized Local Variable 001 100.00%
5 |IDP lllegal Dereference of Pointer |1 1 | 88.8%%
_ B |MIP Uninitialized Pointer 1010 |0 £ 100,00%
_F NIV Uninitialized Variable 0100 - 100.00%
8 IRV Initialized Value Returned 0 (0|0 100.00%
9 [COR Other Correctness Conditions |0 0 |0 100.00%
10 |ASRT User Assertion Failure 000 0.00%
11 |POW Fower Must Be Positive 0 0|0 0.00%
217DV Division by Zero 0|10 80.00%
13 |SHF Shift Amount Within Bounds ([0 [0 |0 0.00%
14 |OVFL Overflow 1013 |2 | 76,92%
15 |UNFL Underflow 011 |2 | N.67%
16 |UOVFL Underflow or Overflow 013 |0 67.14%
AT |[EXCP Arithmetic Exceptions 000 0.00%
18 |[NTC Mon Termination of Call 300 100,00%
19 [k-NTC Known Non Termination of Call ([0 0 |0 0.00%
20 |NTL Mon Termination of Loop 00 |0 0.00%
_21 |UNR Unreachable Code 010 |0 0.00%
22 [UNP Uncalled Procedure 1010 |0 0.00%
= IPT Inspection Point 1010 |0 0,00%
24 OTH other checks 0100 0.00%
25 [Total : 419 |5 32.17%

This ends ways of results review.

Release 2007a+
Revision 4.2 vA

71/377

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.5. Launch PolySpace Remotely
This paragraph describes the basic steps to launch an analysis in a remote way. This operation
necessitates that:
1. A Queue Manager server (QM) has been previously installed.
2. Your desktop PC has been configured with a PolySpace Client.
See the PolySpace Installation guide available on the PolySpace CD-ROM in <CD- ROM>\ Docs
\'I nstal | inorder to install and configure the Remote Launcher between a Client and a Server.

Note: Launching an analysis remotely requires a PolySpace Server product and associated license.

Related subjects:
2.5.1. Steps of Launching

2.5.2. Management of PolySpace analysisin remote: the PolySpace Spooler
2.5.3. Batch commands
2.5.4. Shar e analyses between accounts

Release 2007a+ 72/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.5.1. Steps of Launching
You need to follow theses two simple steps:

« Step 1: prepare an analysis. You need to set up an analysis like it has been described in step 1
without launching it.

* Then you just have to tick the “Remote analysis” radio button (see next figure) and then, click on

to launch the analysis.

Fomcts oty [v] | P Evectn | @
I I | il I Laeats | e L vl - (T '1_;“,
QOO0 [le e] (il] L LR 1000 00 LR s O 0) e ele il
EWLW Search in the log ['l:] |l+_r] II
TR |
rusiog
el parwtedet

The analysis starts and the compilation phase is performed on the desktop PC. At the end of the “C source
verification phase” the analysis is sent to the Queue Manager server. By clicking on the “Ful | Log” tab, you will

have a message like that:

et aretyss || ¥ Bancudn o
o o | e | e] o
(00T il i (0000 il 0y Dy 1T 1L TR e
H-ML.;.] Sharch in thé kg [-"il |£]'
P '
{ Fulog
el parwtate

The analysis has been queued with an ID number and you can follow its progression using the PolySpace Spooler.

Without ticking the “Renot e anal ysi s” radio button, the analysis continues locally.

Release 2007a+ 73/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.5.2. Management of PolySpace analysis in remote: the PolySpace Spooler

You can see the PolySpace jobs on the remote queue by clicking on the short cut on your desktop PC
PolySpace Spooler
Raccourc

2 Ko

R
or on the icon 4 in the menu bar of the launcher.

Fursulls dwacion Py Stahus Dato Language

ciDemo_C_resulis esidl complatad 13 Mar-2006, 1003726 c

cHEESULTS pesulis_vos LCELEL canpleted 13bdar-2 006, 121541 C

bard pohApace chPol/Space\ B enser tesid] complatad 15-har-2008, TE1240 B

4| PokSpace Dremo_C cHEESULTSYresulis_wvoa 1egid] complated 1 =bdmr-2006, 150344 C

When you select an analysis (by clicking on the left button of the mouse), you can manage it in the queue (see
next figure):

W PolySpace Spooler

Slatus Dala
complatad 1 3-Har-2006, 1063726
camipleted 13=4ar2 006, 121941

ol 1 5-bar-2 006181 240

complatad 1 7-4mr-2006, 160344

Follow progress ...
View bog fie ..
Dowmingd results ..,

pobspace

Move down in queue

K and diownioad results ...
KH and remaowe from queue .

 Fol | ow progress. This action lists the associated log file in a Launcher window. If the analysis is
running, you can follow on the Launcher window the update of the log file and associated progress bar in
real time.

« View log file. This action lists the associated log file in a “Command pr onpt ” window. If the
analysis is running you can follow on a “Command pr onpt ” window the 100 last lines update of the log
file in real time.

« Downl oad resul ts. This action downloads results of an analysis on the client. The download is not
possible for a queued analysis. If the analysis is still running, available results are downloaded on the
client, without disturbing the analysis.

« Myve down in queue. This action reduces the priority of a queued analysis.

Release 2007a+ 74/377
Revision 4.2 vA

« Kill and downl oad resul ts. This action works if the analysis is running. The analysis will be
definitively stopped and the results will be downloaded. The status of the analysis changes to aborted.
The analysis remains on the queue.

« Kill and renove from queue. This action works if the analysis is running. The analysis will be

definitively stopped, and the analysis will be removed from the queue. Note: The results will be lost.

* Remove from queue. This action removes a queued, aborted or a completed analysis. Note: The

results will be lost.

The queue can be managed from an administrator point of view with the “Operations>" menu:

« «Operations>Purge queue”. This action purges the entire queue or purges only completed and

aborted analysis (see next figure). The password of the queue’s manager is required.

Purge queue @

Fleasze selectthe action vou want to perdorm and type the administrator password

Action

Fassword

IF"urge completed and aborted analysis

w

]

Furge the entire

Purge cc

]S

CUEUE

Cancel

 «Operations>Change root password”. This action changes the password of queue
manager. Note: by default this password does not exist.

On a UNIX platform, there is no graphical user interface but a set of commands which allow the management of

analyses on the queue. All theses commands begin with the prefix <Pol ySpaceComonDi r >/

Renot eLauncher/ psqueue-.

Release 2007a+
Revision 4.2 vA

75/1377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.5.3. Batch commands

* Launch analysis in batch:
A set of commands allow the launching of analysis in batch (under a cygwin shell on a Windows

machine). All theses commands begin with the prefix <Pol ySpaceComonDi r >/

Renot eLauncher/ bi n/ pol yspace-renot e-: pol yspace-renote-cpp (aserver
analysis) and pol yspace-renot e- deskt op- cpp (a client analysis). By default the
<Pol ySpaceCommonDi r > is “C. \ Pol ySpace\ Pol ySpace Conmon”.

They are equivalent to respectively the commands with a prefix <Pol ySpacel nstal | Di r >/

bi n/ pol yspace- . For example, pol yspace-r enot e- deskt op-cpp —server

[<host nanme>: [<port>] | auto] allows the sending of a PolySpace client for C++ analysis
remotely.

* Manage analysis in batch:

In batch and on a UNIX platform, a set of commands allow the management of analysis in the
queue. All theses commands begin with the prefix <Pol ySpaceConmonDi r >/

Renot eLauncher/ bi n/ psqueue- :

o psqueue-downl oad <I D> <results dir>: download an identified analysis into a
results directory. [- f] force download (without interactivity) and —admi n —p

<passwor d> allows administrator to download results. [—ser ver <nanme>[: port]]

selects a specific Queue Manager. [-v|version] gives release number.
o psqueue-ki |l <l D>: kill an identified analysis.

o psqueue- purge all| ended: remove all or finished analyses in the queue.
0 psqueue- dunp: gives the list of all analyses in the queue associated to default Queue

Manager.
o psqueue- nove- down <I D>: move down an identified analysis in the Queue.

o psqueue-renove <i d>:remove an identified analysis in the queue.

0 psqueue- get - gm ser ver : give the name of the default Queue Manager.

o psqueue- progress <I D>: give progression of the currently identified and running
analysis. [- open- | auncher] display the log in the graphical user interface of launcher.
[-full] gives full log file.

o psqueue-set - password <ol d password> <new passwor d>: change

administrator password.
o psqueue- check- confi g: check the configuration of Queue Manager. [- check-

| i censes] check for licenses only.
o psqueue- upgr ade: Allow to upgrade a client side (cf. Pol ySpace | nstall gui dein

Release 2007a+ 76/377
Revision 4.2 vA

the <Pol ySpaceCommonDi r >/ Docs directory). [- | i st - ver si ons] gives the list of
available release to upgrade. [-i nstal | - versi on <versi on nunber> |-

install-dir <directory>]] [-silent] allow to install an upgrade in a given
directory and in silent.

Note: <Pol ySpaceCommonDi r >/ Renot eLauncher/ bi n/ psqueue- <conmand> - h gives
information about all available options for each command.

Release 2007a+ 77/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.5.4. Share analyses between accounts

Analysis-key.txt file
From a security point of view, all analysis spooled on a same Queue Manager are owned by the user
who sent the analysis from a specific account. Each analysis has a unique cryptic key.

The public part of the key is stocked in a file anal ysi s- keys. t xt associated to a user account. On a

Unix account, this file is located in:
« “/hone/ <user nane>/ . Pol ySpace”

On a Windows account, it is located in: “ C: \ Docunent s and Setti ngs\ <user nanme>
\ Appl i cati on Dat a\ Pol ySpace”.

The format of the ASCII file is the follow ng (spaces are tabul ation):
<id of launching> <server nane of |P address> <public key>

Example:

1 nml20 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 nl20 2860F820320CDD8317C51E4455E3D1A48DCES76F5C66BEEF391A9962
8 nl20 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

When we make an attempt of management (download, kill and remove, etc.) on a particular analysis,
the Queue Manager will examine this file and find the associated public key to authenticate the analysis
on the server.

If the key does not exist, an error message appears: “key for analysis <id> not found”. So sharing an
analysis with another user account necessitates the public key.

Sharing an analysis is quite simple, ask to the owner of the analysis the line in anal ysi s- key. t xt

which containing the associated ID and put it the line in your own file. After, it will be able to download
the analysis.

Magic key or share analysis between projects
A magic key allows to share analyses without taking into account the <id>. It allows same key for all

analysis launched by a user account. The format is the following:
0 <Server id> <your hexadeci mal val ue>

All analyses spooled will have this key instead of random one. In the same way, if this kind of key is
available in an anal ysi s- key. t xt file of another user, it allows to authorize any operation on any

analyses pushed with this key.

Release 2007a+ 78/377
Revision 4.2 vA

Note: It only works for all analysis launched after having put the magic key in the file. If the analysis has
been launched before, the allowed key associated to the ID will be used for the authentication.

Release 2007a+ 79/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

2.6. Summary

After having followed each steps of this tutorial, you are now able to launch a class analysis using
PolySpace Client, and explore some results with PolySpace Viewer. All theses command can be
performed locally on your desktop PC or in Client/Server architecture.

You will find more information on advanced options available with our tools in “Pol ySpace C++
docunent at i on. pdf ” available on the CD-ROM or in <Pol ySpaceComonDi r >\ Docs\ Manual s.

Release 2007a+ 80/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3. Analysis setup

Related subjects:
3.1. Common Compileerrors

3.2. Dialect issues

3.3. Link messages

3.4. Methodology using the pre-processed .ci files
3.5. OS and target specifications

3.6. Intermediate language errors

3.7. Advanced setup

Release 2007a+ 81/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1. Common Compile errors

Related subjects:
3.1.1. Includes

3.1.2. Specific keyword or extended keyword
3.1.3. Initialization of global variables

Release 2007a+ 82/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.1.1. Includes

As for the C language, access to the standard header files must be provided when the applications use
the standard library.

The original code uses standard header files, but a message can appear:

Error nessage:
file.cpp”, line 1: catastrophic error: could not open source file
“iostream h"
file.cpp:
1 #i ncl ude "i ostream h"

Use the —I option to include the correct header files, including the header files of the compiler.

Release 2007a+ 83/377
Revision 4.2 vA

y E‘; HNOLOGIES
Previous Back to table of contents Next

3.1.2. Specific keyword or extended keyword

. Specific keyword
Compilers of specific application are defined theirs owned keyword. A classic example is the compiler for micro
controller as IAR or Keil compiler.

Original code:

keywor d. h keywor d. cpp

cl ass keyword #i ncl ude “keyword. h”
{ keywor d: : keyword(i nt val)
publi c: (

int far mval; mval = O

keyword (int val); B
}; if (val > 10)

mval = -1;
}

Error message:
Verifying keyword. cpp
./ sources/ keyword. h", line 7: error: expected a ";"

int far mval;
N

./ sources/ keyword. cpp”, line 6: error: identifier "mval" is undefined

m val = O;
N

2 errors detected in the conpilation of "CPP-ALL/ SRC/ MACROS/ keywor d. cpp”.

You need to use the option - Dto not take accounts these keywords: - D f ar =

. Non ANSI keywords
You might have the same error message as for a regular compilation error, as discussed previously when using
some non ANSI keyword containing for example @ as first character. But in this case, the problem cannot be
addressed by means of a compilation flag, nor a —include file. In this case, you need to use the post-preprocessing
command.

1. Create a file called ABC.txt, and save it under c:\PolySpace

2. Open it with an ASCII editor, and copy and paste the following text

#! / bi n/ sh
sed "s/titi/toto/g" |
sed "s/@nterrupt//g"

3. In the launcher, specify the absolute path and file name in the -post-preprocessing-command field
using browse button on a Windows system.

Release 2007a+ 84/377
Revision 4.2 vA

Note: that under Linux, you must:

» enter the full path, such as / hone/ pol y/ wor ki ng_di r/ ABC. t xt , and
* make sure this file has execution permissions by typing: chnod 755 ABC. t xt .
Launch an analysis on the example “ny_fi | e. cpp” below, and confirm that the compilation phase generates no
errors.
voi d mai n(voi d)
{

@nterrupt // will be renoved by the command

int titi; // wll be replaced by “int toto”
int r=0; r++; t ot o++;

}
To confirm that the right transformation has been performed, open the expanded file “ny_fil e. ci” whichis
located in the directory “ <resul ts_f ol der>/ CPP- ALL/ ny _file.ci”

. Complex post preprocessing command
If you want to ignore non-compliant keywords such as “f ar ” or Ox followed by an absolute address, you can use
the template described below to deal with them. Save it under c: \ Pol ySpace\ nyTpl . pl , and select ny Tpl . pl
in the PolySpace Launcher using browse button associated to —post-preprocessing-command. Content of the

nmyTpl . pl file:

#!/ usr/ bi n/ perl

HEHHAHH R R R R R R R R R R R R R R R
Post Processing tenplate script

Copyright 1999-2005 Pol ySpace Technol ogi es.

#

HEHHBHH A R R R R R R R R R R R R R R R
Usage from Launcher GUI :

#
#
1) Linux: [usr/ bin/perl PostProcessingTenpl at e. pl

2) Solaris: /usr/local/bin/perl PostProcessingTenpl ate. pl
3) Wndows: /usr/bin/perl PostProcessingTenpl ate. pl

#

HHHBHAHHBHBHHHHBHBHH BB H B R H BB BB R H BB R R H BB R B H

$versi on 0.1;

$I NFI LE
$QUTFI LE

STDI N;
STDOUT;

whi | e (<$I NFI LE>)
{

Renove far keyword
s/farll;

Renove " @OxFEl1" address constructs
s/I\@sOx[A-F0-9]*//g;

Renove " @xFE1" address constructs
s/\ @x[A-FO-9]*//gq;

Renmobve " @ ((unsi gned) &LATD*8) +2" type constructs
s/I\@s\(\(unsigned\)\ & A-Z0-9]+*8\)\+\d//g;

Release 2007a+ 85/377
Revision 4.2 vA

Convert current line to | ower case
$_ =~ tr/A 2l a-zl/;

Print the current processed |ine
print $OQUTFILE $_;

}

* Perl regular expressions summary

HHHHHH B HAH B R HAH B R RPH R AR R R R R R R R R R R
Met achar acter What it matches
HEHHBHHHHHHBHH B H B R H B H B H R R H R R H R R R
Singl e Characters

Any character except newine

[a-z0-9] Any single character in the set

[ra-z0- 9] Any character not in set

\d A digit sane as

\D A non digit same as [”0-9]

\'w An Al phanuneric (word) character

\W Non Al phanuneric (non-word) character

Whi t espace Characters

\'s Wi t espace character

\'S Non- whi t espace character
\n new i ne

\'r return

\'t tab

\ f for nf eed

\b backspace

Anchored Characters

\B wor d boundary when no inside []
\B non-wor d boundary

A Mat ches to begi nning of |ine

$ Mat ches to end of |ine

Repeat ed Characters

X? 0 or 1 occurence of x

X* O or nore x's

X+ 1 or nore Xx's

x{m n} Mat ches at least mx's and no nore than n x's
abc Al'l of abc respectively

t o] be| gr eat One of "to", "be" or "great"

Renmenber ed Characters

HFHIFHFFHRHFHRFHFHFHAFBFHFFFRFHRAFFHFEFEREHERHRIFEEEHHHFESH R

(string) Used for back referencing see bel ow
\'1l or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses

HEHHBHHHHHHBHH B H B H B H R H R H R H R R H R R R
Back referencing

red cat -> cat red

#
#
e.g. swap first two words around on a line
#
s/ (\wt) (\w+)/$2 $1/;

#

Release 2007a+ 86/377
Revision 4.2 vA

BHHBHHBHE B HE B HE B R R R R R R R R R R R R R R R B B

Release 2007a+ 87/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES

Previous Back to table of contents Next

3.1.3. Initialization of global variables

When a data member of a class is declared static in the class definition, then it is a static member of the class.
Static data members are initialized and destroyed outside the class, as they exist even when no instance of the
class has been created.

Original code:
cl ass Test

{
publi c:

static int mnunber = 0;

H

Error message:
Verifying Test.cpp
./sources/test.h", line 33: error: data nenber initializer is not all owed

static int mnunber = 0;
AN

1 error detected in the conpilation of "CPP-ALL/ SRC/ MACROS/ Test. cpp".

Corrected code:

in file Test. h: in file Test.cpp

cl ass Test i nt Test::m nunber = 0;
{

publi c:

static int mnunber;

I

Note: Some dialects, other than those offered by PolySpace C++, accept the default initialization of static data
member during the declaration.

Release 2007a+ 88/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2. Dialect issues

Related subjects:
3.2.1. iso versus default dialects

3.2.2. CFront2 and CFront3 dialects
3.2.3. Visual dialects

Release 2007a+ 89/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.2.1.iso versus default dialects

The 5 common permissiveness options used by PolySpace are described in this paragraph when using —
di al ect iso:

Original code:

File per mi ssi ve. cpp

class B {} ;

class A
{
friend B ;

enum e ;

void f() { long float ff = 0.0 ;}
enume { K =0, KO} ;

}

tenpl ate <class T>
struct traits

{
typedef T * pointer ;
t ypedef T * pointer ;

-
t enpl at e<cl ass T>
struct C
{
t ypedef traits<T>::pointer pointer ;
o
int main()
{

Cint> c ;
}

1.

".lsources/permssive.cpp”, line 5 error: omssion of "class" is nonstandard
friend B ;

Using dialect i so, should be: fri end cl ass B;

2.

"./sources /perm ssive.cpp", line 6: error: forward declaration of enumtype
i s nonstandard

enum e |
A

Release 2007a+ 90/377
Revision 4.2 vA

Using dialect i so,, the line 6 must be removed

3.

“./sources/perm ssive.cpp", line 7: error: invalid conbination of type
specifiers
long float ff = 0.0 ;

AN

Using dialect i so, line 7 should be: doubl e ff = 0.0;

4
"./sources/permssive.cpp", line 14: error: class nmenber typedef nmay not be
redecl ar ed
typedef T * pointer ; // duplicate !
N

Using dialect i so, line 14 needs to be removed

5.

"./sources/permssive.cpp", line 21: error: nontype "traits<T>::pointer
[Wwth T=T]" is not a type nane
typedef traits<T>::pointer pointer ;
Using dialect i so, line 21 needs to be changed by: t ypedef typenane traits<T>::pointer pointer

All these error messages will disappear if the —di al ect def aul t option is activated.

Release 2007a+ 91/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2.2. CFront2 and CFront3 dialects

As mentioned at the beginning of this section, cf r ont 2 and cf r ont 3 dialects were already being
used before the publication of the ANSI C++ standard in 1998. Nowadays, these two dialects are used
to compile legacy C++ code.

If the cfront2 or cfront3 options are not selected, you may get the common error messages below.

 Variable scope issues
The ANSI C++ standard specifies that the scope of the declarations occuring inside loop definition is
local to the loop. However some compilers may assume that the scope is local to the bloc ({ }) which
contains the loop.

Original code:
for (int i =0; i < maxval; i++) {...}
if (i == maxval) {

}

Error message:
Verifying Test.cpp
./l sources/ Test.cpp", line 26: error: identifier
if (i == maxval) {
N

i i s undefi ned

Note: This kind of construction has been allowed by compilers until 1999, before the Standard became
more strict.

* ‘bool’issues
Standard type may need to be turned into ‘boolean’ type

Original code:
enum bool

{

FALSE=0,
TRUE

b

cl ass CBool
{
publ i c:

CBool ();

CBool (bool val);

Release 2007a+ 92/377
Revision 4.2 vA

bool

b

m val ;

Error message:

Veri fyi
Veri fyi

nane
enum

ng C++ sources

ng CBool . cpp

"../sources/ CBool.h",

bool
N

i ne 4:

error:

expected either a definition or a tag

Release 2007a+
Revision 4.2 vA

93/377

y E‘; HMOLOGIES
Previous Back to table of contents Next

3.2.3. Visual dialects
The following messages will appear if the compiler is based on a visual dialect (including visual8).

 Import directory
When a Visual application uses #i npor t directives, the Visual C++ compiler generates a header file which contains

some definitions. These header files have a . t | h extension and tPolySpace C++ requires the directory containing
those files.

Original code:

#i ncl ude "stdaf x. h"
#i ncl ude <condef. h>

#import <MsXm . tl b>

MBXML: : _xm _error e ;
MSXM.: : DOVDocunent * doc ;

int tmain(int argc, _TCHAR* argv[])
{

}

return O;

Error message:

../sources/InportDir.cpp", line 7: catastrophic error: could not open source file
"I MsXm .t h"

#i nport <MsXmi .tl b>

AN

The Visual C++ compiler generates these files in its “build-in” directory (usually Debug or Rel ease). Therefore, in
order to provide those files, the application needs to be built first. Then, the option —i nport - di r =<bui | d

di r ect or y> must be set with a correct path folder.

e pragma pack
Using a different value with the compile flag (#pr agma pack) can lead to a linking error message.

Original code:

testl. cpp type. h test2. cpp
#pragma pack(4) struct A #pragma pack(2)
{
#i ncl ude "type. h" char c ; #i ncl ude "type. h"
int i ;
}

Error message:
Pre-1inking C++ sources ...
./sources/type.h", line 2: error: declaration of class "A" had a different meaning

Release 2007a+ 94/377
Revision 4.2 vA

during conpilation of "CPP-ALL/ SRC/ MACROS/testl.cpp” (class types do not match)

struct A
N

detected during conpilation of secondary translation unit "CPP-ALL/SRC
MACROS/ t est 2. cpp”

The option - i gnor e- pr agna- pack is mandatory to continue the analysis.

Release 2007a+ 95/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3. Link messages

Related subjects:
3.3.1. STL library C++ Stubbing errors

3.3.2. Lib C stubbing errors

Release 2007a+ 96/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.1. STL library C++ Stubbing errors

PolySpace provides an efficient implementation of all functions in the Standard Template Library. The
Standard Template Library (STL) and platforms may have different declarations and definitions,
otherwise the error messages below appears.

Original code:
#i ncl ude <map>

struct A

{
int mval;

b

struct B

{
I nt myval;
B& operator=(B &) ;

b

typedef std::map<A, B> MAP ;

int main()
{
MAP m ;
Aa;
B b

minsert(std::nmake pair(a,b)) ;

}

Error message:

Verifying tenpl ate. cpp

"<Product >/ Verifier/cinclude/ new stl/mp", line 205: error: no operator
"=" matches these operands

operand types are: pair<A, B> = const map<A, B, |ess<A>>::value_ type

{ volatile int randomalias = 0 ; if (randomalias) *((pair<Key, T> *)

_pst_elenments) =x ; } ; I/ read of x is done here

detected during instantiation of
"pair<__pst__generic_iterator<bidirectional iterator_tag, pair<const Key,
T>>, bool > map<Key, T, Conpare>::insert(const map<Key, T, Conpare>::

Release 2007a+ 97/377
Revision 4.2 vA

value type & [wth Key=A T=B, Conpare=less<A>]" at line 23 of "/cygdrive/
c/ _BDS/ Test - Pol yspace/ sources/tenpl at e. cpp”

Using the option —no- st ub- st | avoid this error message. Then, you need to add the directory
containing definitions of own STL library as a directory to include using option —I .

The preceding message can also appear with the directory names:

"<Product >/ ci ncl ude/ new _stl/map”, line 205: error: no operator "=" matches
t hese operands

" <Product >/ ci ncl ude/ pst _stl/vector", line 64: error: nore than one
operator "=" matches these operands:

Be careful, that other compile or linking troubles can appear with your own template definitions.

Release 2007a+ 98/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

3.3.2. Lib C stubbing errors

« Extern Cfunctions
Some functions may be declared inside an extern “C” { } bloc in some files but not in others. In this case, the linkage is
different which causes a link error, as it is forbidden by the ANSI standard.

Original code:

extern "C' {
voi d* nmencpy(voi d*, void*, int);
}

cl ass Copy

{
public:

Copy() {}:
static void* make(char*, char*, int);

}

voi d* Copy:: make(char* dest, char* src, int size)

{
}

return mencpy(dest, src, size);

Error message:
Pre-1inking C++ sources ...
"<results_dir>/CPP-ALL/ CPP-STUBS/ __ pol yspace__stdstubs.c", |ine 2996: error:
decl aration of function "nencpy"” is inconpatible with a declaration in another
translation unit (paraneters do not match)

the other declaration is at line 4 of "/sources/ Copy.cpp"
extern void * _ pst _profile_ nencpy (void *sl, const void *s2, size t n) ;

extern "C'" void * nencpy (void *sl, const void *s2, size_t n)
N

detected during conpil ation of secondary translation unit "CPP-ALL/
SRC/ MACROS/ __pol yspace__stdstubs. c"

The function nentpy is declared as an external "C" function and as a C++ function. It causes a link problem. Indeed, function
management behavior differs whether it relates to a C or a C++ function.
When such error happens, the solution is to homogenize declarations, i.e. add “extern “C’ { }” around previous listed C

functions.
Another solution consists in using permissive option - no- ext er n- C. It will remove all declaration extern "C"

e Standard stubs
It could also happen that the compiler (used) does not provide exact ANSI prototypes for a given C function of the standard
I i bClibrary.
Original code:
#i ncl ude <signal . h>

extern "C' {
extern void (*signal (int, void (*)(int)))(int);
}

cl ass Copy

Release 2007a+ 99/377
Revision 4.2 vA

{
publi c:

Copy() {};

}

Error message:
Pre-1inking C++ sources ...

c:\resul t s\ CPP- ALL\ CPP- STUBS\ __pol yspace__stdstubs.c:891: error: a value of type "void (*)
(...) C" cannot be used to initialize an entity of type "_pol yspace_signal _function_type"
_pol yspace_signal _function_type res = (void (*)(...))(-1);
A

c:\resul t s\ CPP- ALL\ CPP- STUBS\ __pol yspace__stdstubs.c:922: error: a value of type "void (*)
(...) C'" cannot be assigned to an entity of type "_pol yspace_signal function_type"
res = (void (*)(...))1;

AN

In the previous example and associated error message, a problem occurs in the __pol yspace__ st dst ubs. c file. At line
891 of this file, located in <resul t s di rect ory>/ CPP- ALL/ SRC, the prototype of si gnal function does not match the

one given in the original code. In this example, the code to analyse does not follow the Standard ANSI function prototype on
function si gnal .

It is possible to use compiler prototypes by deactivating standard prototype provided by ANSI. To do so, you have to add the
flag POLYSPACE _NO STANDARD_ STUBS to the analysis using —D option: —D POLYSPACE_NO STANDARD STUBS. All

functions declared in assert. h, ctype.h, errno.h, locale.h, math.h, setjnp.h, signal.h, stdio.h,
stdarg. h, stdlib.h, string.h and ti nme. h will be taken into account.

Functional limitations on some of stubbed standard ANSI functions
. signal . his stubbed with functional limitations: 'si gnal 'and 'r ai se' functions do not follow the associated
functional model. Even if the function ‘r ai se’ is called, the stored function pointer associated to the signal number is
not called.
. No jump is performed even if the 'set j mp' and 'l ongj np' functions are called.
. errno. his partially stubbed. Some math functions, for which PolySpace uses built-in code, do no set ‘errno’ but
instead generate a red error when a range or domain error occurs (see examples with NTC checks).

You can also use the compile option POLYSPACE _STRI CT_ANSI _ STANDARD STUBS (-D flag) which will only deactivate
extensions to ANSI C standard libC. Functions bzer o, bcopy, bcnp, chdir, chown, close, fchown, fork,

fsync, getlogin, getuid, geteuid, getgid, Ichown, |ink, pipe, read, pread, resolvepath,
setuid, setegid, seteuid, setgid, sleep, sync, symink, ttynane, unlink, vfork, wite,

pwite, open, creat, sigsetjnp, __sigsetjnp and si gl ongjnp are concerned.

Release 2007a+ 100/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.4. Methodology using the pre-processed .ci files

In the preceding paragraphs, common types of compile or linking errors messages have been detailed. They are
associated to C++ dialects, or specific options used by the dialect (for instance Microsoft Visual C++ with the option —
import-dir).

Nevertheless, sometimes the error messages are not sufficient to find the cause of problems. Indeed they do not
correspond to common error messages listed above.

PolySpace, as others compilers, transforms a source code to a pre-processed code. These files are located in the
folder: <resul t s di rect ory>/ CPP- ALL/ SRC/ MACRCS or <resul t s directory>/ ALL/ SRC/ MACRCS. They

have a .ci extension and they will help to understand and find precisely the error problem.

1.4.1. Example of ci file

A *.ci file is a copy of original file containing whole header files inside a unique file:
. compile flags activate some parts of code,
. macro commands are expanded,
. arguments which are described as “#define xxx”, are replaced by their owned definition,

. etc.
Ext ensi on. cpp Ext ensi on. h
#i ncl ude " Extension. h" #defi ne MAX VALUE 10
#define ABS(x) ((x)<0?(x):-(x))
Ext ensi on: : Ext ensi on(i nt val)
{ cl ass Extension
mval = 0; {
ABS(val) ; publi c:
int muval;
if (val > MAX VALUE) Extension(int val);
mval = -1;
} #i f def _DEBUG
voi d message(char*);
#i f def _DEBUG Hel se
voi d Ext ension:: nessage(char*) {} void print(char*);
#el se Hendi f
void print(char*) {} I
#endi f

The associated file Ext ensi on. ci uses the compile flag _DEBUG:

1 "../sources/extension.cpp"
1 "<Product>/ Verifier/cincludel/pol yspace_std_decls.h" 1

1 ./ sour ces/ ext ensi on. cpp" 2
1 "../sources/extension.h" 1

Release 2007a+ 101/377
Revision 4.2 vA

cl ass Extension

{
publi c:
int muval;
Ext ensi on(int val);
nmessage(char*); /1 _DEBUG activates the nessage nenber function
b
2 "../sources/extension.cpp" 2

Ext ensi on: : Ext ensi on(int val)

{
mval = 0;
((val)<0?(val): -(val)); /1| EXPANDED MACRO ABS
if (val > 10) /1 MAX VALUE REPLACED BY 10
mval = -1;
}

voi d Extension:: nessage(char*) {}

Analyzing these files with the compile flag —D _ DEBUG expands the code fully and may help to find the problems
quickly.

1.4.2. Methodology Guide

This guide is designed to help understanding errors messages, as well as the differences between your compiler and
PolySpace:

1. Check whether the compile error messages come from a dialect problem.
2. Check whether Verify that linking error messages are related or not to:
a. A C++ Stubbing error which could be resolved by an option (like —no-stl-stubs)
b. C-Stubbing error which could be resolved by an option or a compilation flag like
POLYSPACE_NO_STANDARD_STUBS or POLYSPACE_STRI CT_ANSI _STANDARD_ STUBS
3. Check the pre-processed *. ci files to see the expanded files. Looking at the pre-processed code can help to
find errors faster.

Example with these original codes:

Childl.c Child2.c Test. h
#def i ne DEBUG #undef DEBUG cl ass Test
{
#i ncl ude "Test. h" #i ncl ude "Test. h" publi c:
class Childl : public Test |[class Child2 : public Test Test () ;
{ { Test(int val);
publi c: publ i c:
Chi 1 d1(); Chi 1 d2(); int getVval();
Child1(int val); Child2(int val); void setVal (int val);
voi d search(int val); voi d gshort(int val); #i f def DEBUG
void algorithm(int val, int
}; pr ot ect ed: max) ;
int mstatus; Hendi f
};
private:
Release 2007a+ 102/377

Revision 4.2 vA

int muval;

},

Error message:

Pre-1inking C++ sources ...
"..lsources/test.h", line 4: error: declaration of function "Test::Test(const Test
& " does not match function "Test::algorithni during conpilation of "CPP-ALL/SRC
MACROS/ Chi | d2. cpp” (one may have been renoved due to #define)
cl ass Test

N

detected during conpilation of secondary translation unit "CPP-ALL/ SRC
MACROS/ Chi | d2. cpp”

In this example it is clear that DEBUGIs defined in chi | d1. ¢ but not in chi | d2. ¢ which creates two different
definition of the class test.
The solution can also come up by comparing the two *.ci files:

Test . ci Chi |l d2. ci

1 "../sources/ Test.cpp" 2

1 "../sources/test.h" 1 # 1 "../sources/Child2.cpp" 2
1 "../sources/Child2.h" 1
cl ass Test # 1 "../sources/test.h" 1
{
publi c: cl ass Test
Test(): {
Test(int val); publi c:
Test();
int getVval (); Test(int val);
void setVal (int val);
int getVval ();
void algorithn(int val, int max); void setVal (int val);
privat e:
int mval
}; private:
int mval;
2 "../sources/ Test.cpp" 2 I

H# 2 " .. /sources/Child2. h" 2

Looking at the pre-processed code can help to find errors faster.

Release 2007a+
Revision 4.2 vA

103/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5. OS and target specifications

Related subjects:
3.5.1. List of already predefined compilation flags

3.5.2. Target specifications

Release 2007a+ 104/377
Revision 4.2 vA

Previous

3.5.1. List of already predefined compilation flags

PonSp

Back to table of contents

ace

TECHNOLOGIES

The following table shown for each —OS-target, the list of compilation flags defined by default, including pre-include header file (see also —include):

-OS-target

Compilation flags

-include file

Minimum set of options

LI nux

-D__SIZE TYPE__=unsi gned
-D__PTRDI FF_TYPE__=i nt
-D__STRICT_ANSI __
-D_inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
- D_POSI X_SOURCE
-D__STL_CLASS_PARTI AL_SPECI ALI ZATI ON
-D__GNUC__=2

-D__GNUC_M NOR__=6
-D__STDC _

-D_ELF__

- Duni x

-D__uni x

-D__uni x__

- Dl i nux

-D__|inux

-D__linux__

- Di 386

-D__i 386

-D__i386__

- Di 686

-D__i 686

-D__i686__

- Dpent i unpro
-D__pentiunpro

-D__pentiunmpro__

<pr oduct _di r>/ ci ncl ude/ pst -

| i nux. h

pol yspace- [deskt op-] cpp - OS-target

Where the Pol ySpace product
t he directory <product_dir>

<product _di r>/include/include-Iinux \

<product _di r>/include/incl ude-Iinux/next

Li nux \

has been installed in

Release 2007a+
Revision 4.2 vA

105/377

vxWor ks

-D__SIZE TYPE__=unsi gned
-D__PTRDI FF_TYPE__=i nt
-D__STRICT_ANSI __
-D_inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
- D _PCSI X_SOURCE

D GNUC =2

- DANSI _PROTOTYPES
- DSTATI C=

- DCONST=const
-D__STDC
-D__GNUC__=2
- Duni x
-D__uni x
-D__uni x__

- Dspar ¢
-D__sparc
-D__sparc__

- Dsun

-D__sun
-D__sun___
-D__svr4__
-D__SVR4

. D__STL_CLASS_PARTI AL_SPECI ALI ZATI ON -

<pr oduct _di r>/ ci ncl ude/ pst -
lvxwor ks. h

pol yspace-[desktop-]cpp \
- OS-target vxworks \

-1 /your_path_to/ Vxworks_include_directories

vl sual
vi sual 6

-D__SIZE _TYPE__=unsi gned

-D__PTRDI FF_TYPE__=i nt
-D__STRICT_ANSI __
-D_inline__=inline
-D__signed__=signed

-D__gnuc_va list=va_list

- D_POSI X_SOURCE

-D__STL_CLASS_PARTI AL_SPECI ALI ZATI ON

<pr oduct _di r >/ ci ncl ude/ pst -
\vi sual . h

Sol ari s

Releafe 2007a+

Revisjon 4.2 vA

-D__SIZE_TYPE__=unsi gned
-D__PTRDI FF_TYPE__=i nt
-D__STRICT_ANSI __
-D_inline__=inline
-D__signed__=signed
-D__gnhuc_va_list=va_list
- D_POSI X_SOURCE

- D__STL_CLASS_PARTI AL_SPECI ALI ZATI ON
-D__GNUC__=2

-D__GNUC_M NOR__=8
-D__STDC

- D__GCC_NEW VARARGS

- Duni x

-D__uni x

-D__uni x__

- Dspar c

-D__sparc

-D__sparc__

- Dsun

-D__sun

-D__sun__

If PolySpace runs on a Linux machine:

pol yspace-[desktop-]cpp \
-OS-target Solaris \
-1 /your_path_to_solaris_include

If PolySpace runs on a Solaris machine:

pol yspace-cpp \
-OS-target Solaris \
-1 /usr/include

106,

377

-D__svr4__

LD _SVR4
no- pr edefined- 05 -D__SIZE TYPE__=unsi gned pol yspace- [deskt op-]cpp \
-D__PTRDIFF_TYPE_ =i nt - OS-target no-predefined-0S \
-D__STRICT_ANSI __ -1 /your_path_to/ MyTarget _i ncl ude_directories
-D_inline__=inline

-D__signed__=signed

-D__gnuc_va list=va_list

- D _PCSI X_SOURCE

-D__STL_CLASS PARTI AL_SPECI ALI ZATI ON

Note: this list of compiler flags is written in every log file.

Release 2007a+ 107/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.2. Target specifications

PolySpace takes the type of CPU used in the target environment into account during verification. This determines various characteristics of data
representation such as data sizes, addressing, etc. These are essential to correctly determine some types of errors, such as overflows.

PolySpace supports some of the most commonly used processors as listed in the table below. Even if the processor used in a target environment is
not explicitly mentioned, it is safe to specify one from the table which shares the same listed characteristics.

Title S fze n o) lon charis LITTLE/ tr diff type
char short int long |long long| float double dougle ptr BIG ENDIAN [P yp
sparc 8 16 32 32 64 32 64 128 32 signed Big int, long
1386 8 16 32 32 64 32 64 96 32 signed Little int, long
c-167 8 16 16 32 32 32 64 64 16 signed Little int
m68k / , . :
ColdFire (#1) 8 16 32 32 64 32 64 96 32 signed Big int, long
powerpc 8 16 32 32 64 32 64 128 32 unsigned Big int, long

” #1 The M68k family (68000, 68020, etc.) also has the so-called ColdFire processors as members.

Note: The following table describes target processors that are not fully supported by PolySpace. Nevertheless, the target processor mentioned
in column “Nearest Processor” can be chosen for a Verifier analysis, knowing that information in red is not compatible in both target processors.

Title Sizeof (size in bits) . char is ptr diff Nearest target
char short int long long long [float double long double |ptr signed type processor
tms470rlx 3 16 32 32 N/A 32 64 64 32 TRUE int, long [i386
mpc555 3 16 32 32 64 32 64 64 32 TRUE int, long [i386
hc-12 3 16 16 32 32 32 32 32 16 TRUE int c-167
Release 2007a+ 108/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.6. Intermediate language errors

The analysis log can sometimes indicate that a red error has been detected in the previous phase, and
that the analysis has therefore stopped. If no graphical result is provided, the errors and their locations
are listed at the end of the log file. To find them, you can scroll through the analysis log file starting at
the end and working backwards.

The log file may be similar to this one:

**** C++ to internediate | anguage translation 14 (P_PT) took 2real, 0.5u +
1s (0.1gc)

**** C++ to internediate | anguage translation 15 (P_IL)

* Set of cloned functions : {operator_del ete(void*)}

1 User Program Errors:

* certain failure of correctness condition [non-initialized |ocal
variable] file stubbing.cpp |ine 43 colum 46

Pl ease correct the programand restart the verifier.

**** C++ to internediate | anguage translation 15 (P_IL) took 32. 7real,
10. 2u + 19.5s (0. 2gc)

**** C++ to internediate | anguage translation 16 (P_I PF)

**** C++ to internediate | anguage translation 16 (P_IPF) took 0. 3real,
0.1u + 0.1s

* assigns: 63% reduction

* asserts: 33%reduction

* total : 71% reduction

kkkkhkkhkhkhkhkhkhkhkkhkhhhhhkhkhkhkhkhkkhkhkhhhkhkhkhkhkhkkhkhkhkkhhkhhhkhkhkhkkhkhkhhhdhikhkhkhkkikhkk*k
* % %

*** C++ to internedi ate | anguage transl ati on done

* % %

Rk I S S b b S b b S SR R I b b I b R I I b I S b S b b b S b S R R I kb S b b b b b b b S

Ending at: Cct 6, 2005 18:18:0
User tine for iabc-c2if: 65real, 14u + 27.8s

Note: This example only explains where to find the error list. Moreover, theses errors will be displayed
in the Viewer and shown graphically.

Release 2007a+ 109/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7. Advanced setup

Related subjects:
3.7.1. Reduce oranges step by step

3.7.2. Approximations made by PolySpace
3.7.3. Variables

3.7.4. Types promotion

3.7.5. Built-in functions

Release 2007a+ 110/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.7.1. Reduce oranges step by step

Although PolySpace is effective and straightforward to launch with the minimum of effort, you may find that
some applications would benefit from some code preparation in order to streamline the job of working through
the resulting orange checks. There are four primary approaches which may be adopted in isolation or in
combination.

* Apply some recommended coding rules. Thisisthe most efficient meansto reduce oranges.

e Implement manual stubbing of previously missing (and therefore automatically stubbed) functions.
» Specify call sequences with care.

* Constrain some data assignments. Conventional testing analyses a single set of data, whereas
PolySpace can analyse your module for problems by taking into account all possible data values. If the
range of possible valuesis specified more precisely than the default “full range”’ approach, then there
will be less “noise” in the form of orange checks resulting from “impossible” values.

The following examples show how the selectivity can be improved by each of these four means.

Examples

Since increasing the selectivity can bring any of the following benefits —more red, more , Or readable
- the following examples will give one example of each. Thereisno implied link between the approach
taken to improve selectivity in an example, and the particular way the improvement manifests itself.

Related subjects:
3.7.1.1. Vary the precision level
3.7.1.2. Apply some manual stubbing

Release 2007a+ 111/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.1.1. Vary the precision level

One way to affect precision is to select the algorithm that will be used to model the cloud of points. The
exact method of modelling is managed internally, but you can influence it by selecting the —quick, -O0, -

01, -02 or -0O3 precision level.

The methods used by Verifier to represent the data internally are reflected in the level of precision to be
seen in the results. As illustrated below, the same orange check which results from a low precision
analysis will become green when analysed at a higher precision.

Operation: 1 / (x-v)

':rr

Vary the precision rate

Release 2007a+ 112/377
Revision 4.2 vA

y Q: HNOLOGIES
Previous Back to table of contents Next

3.7.1.2. Apply some manual stubbing

The default behaviour of PolySpace is to automatically stub missing functions members in accordance with their
prototypes. If the function takes a pointer as an argument, PolySpace assumes that the stub can write into the contents
of this pointer. This default behaviour avoids the occurrence of red errors as the result of incomplete code sets.
However, stubbing which accurately reflects the behaviour of the missing code will allow PolySpace to show more red
and grey code, rather than orange checks.

The adopted approach to stubbing can have a significant influence on the speed and precision of your analysis, and
there are occasions when automatic stubbing will not provide an adequate representation of the code it represents —
with regards to both missing functions and assembly instructions.

Stubs do not need to model the details of the functions or procedures involved. They only need to represent the effect
that the code might have on the remainder of the system. If a function is supposed to return an integer, the default
automatic stubbing will stub it as returning all values in the full type of an integer.

It will reduce the cloud of points and therefore increase the precision if a restricted range is specified instead of the full
range. Nevertheless, it is not necessary to write the exact code depending on complicated algorithm, and an
interpolation between 4 parameters; only a quick stub is required, as shown in the following example:

with volatile and assert with assert, and without volatile without assert, without volatile, without
" ifll
_ _ I nt other_tunc(vol d); Int other_tunc(vol d);
lnt st ub(voi d) i nt stub(void) int stub(void)
{ {
Int tnp; t np= ot her _func(); do {tnp= other_func();}
tnmp = random assert (tnmp>=1 && tnp<=10); while (tnp<l || tnmp>10);
assert (tmp>=1 && tnp<=10); return tnp; return tnp;
return tnp; } }
}

In the following paragraph, procedure_to_stub can represent either procedure or a sequence of assembly instructions
which would be automatically stubbed in the absence of a manual stub. (Please refer to the assembly code options).

Stubs do not need to model the details of the functions or procedures involved. They only need to represent the effect
that the code might have on the remainder of the system.

Consider procedure_to_stub, If it represents:

. Atiming constraint (such as a timer set/reset, a task activation, a delay, or a counter of ticks between two
precise locations in the code) then you can stub it to an empty action (void procedure(void)). PolySpace needs
no concept of timing since it takes into account all possible scheduling and interleaving of concurrent execution.
There is therefore no need to stub functions that set or reset a timer. Simply declare the variable representing
time as volatile.

= An /O access: maybe to a hardware port, a sensor, a read/write of a file, a read of an EEPROM, or a write to a
volatile variable.There is no need to stub a write access. If you wish to do so, simply stub a write access to an
empty action (void procedure(void)). Stub read accesses to "read all possible values (volatile)".

« A write to a global variable. In this case, you may need to consider which procedures or functions write to it and
why. Do not stub the concerned procedure_to_stub if:

Release 2007a+ 113/377
Revision 4.2 vA

o The variable is volatile;

o The variable is a task list. Such lists are accounted for by default because all tasks declared with the -
task option are automatically modelled as though they have been started. Write a procedure_to_stub by
hand if

o The variable is a regular variable read by other procedures or functions.

o A read from a global variable: If you want PolySpace to detect that it is a shared variable, you need to
stub a read access. This is easily achieved by copying the value into a local variable.

In general, follow the Data Flow and remember that:
= PolySpace only cares about the C code which is provided;
« PolySpace need not be informed of timing constraints because all possible sequencing is taken into account;
= You can refer to execution hypotheses made by PolySpace for a complete list of constraints.

Example

The following example shows a header for a missing function (which might occur, for example, if the code is a subset of
a project.) The missing function copies the value of the ‘src’ parameter to ‘dest’ so there would be a division by zero — a
run-time error - at run time.

voi d mai n(voi d)

{

= n OI—\

S

oo oo
ngn

i ng_function(&a, b);

! a;

}

By relying on Verifier's default stub, the division is shown with an orange warning because ‘a’ is assumed to be

anywhere in the full permissible integer range (including 0). If the function was commented out, then the division would
be a green"/". Ared "/ " could only be achieved with a manual stub.

Default Stubbing Manual Stubbing Function ignored
vol d mal n(vol d) vol d a_m ssi ng_function vol d a_m ssi ng_function
{ (int *x, int vy;) (int *x, int vy;)

a =1 { *x =vy; } { }
b = 0;
a_m ssing_function(&a, voi d mai n(voi d) voi d mai n(voi d)
b) ; { {
b =1 a; a = 1; a = 1;
/ b = 0; b =0;
} a_m ssing_function(&a, a_m ssing_function(&a,
b) ; b) ;
b=1/ a; b=1/ a;
// red division // green division

By relying on Verifier's default stub, the assembly code is ignored and the division " /" is green. The red division "/"
could only be achieved with a manual stub.

Summary

e Stub manually: to gain precision by restricting return values generated by automatic stubs; to deal with a
function which writes to global variables.

e Stub automatically in the knowledge that no run-time error will be ever introduced by automatic stubbing; to
minimize preparation time.

Release 2007a+ 114/377
Revision 4.2 vA

Related subjects:
3.7.1.2.1. Examples. specification

3.7.1.2.2. Coloured sour ce code example
3.7.1.2.3. Specify the call sequence

3.7.1.2.4. Constraint for data

3.7.1.2.5. Recoding of some specific functions

Release 2007a+ 115/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES

Previous Back to table of contents Next

3.7.1.2.1. Examples: specification

The following examples consider the pros and cons of manual and automatic stubbing.

Here is the first example.
typedef struct _c {
int cnx_id;

int port;

i nt data;

} T_connection ;

int Lib_connection_create(T_connection *in_cnx) ;
int Lib_connection_open (T_connection *in_cnx)

File: connection lib Function : Lib _connection create
paramin None
param i n/ out i n_cnx al| fields nmight be changed in case of a success
returns i nt 0 : failure of connection establishnment
1 : success

H Note Default stubbing is suitable here.

Here are the reasons why:

e Thecontent of thein_cnx structure might be changed by this function.
* Thepossiblereturn values of 0 or 1 compared to the full range of an integer won't have much impact on the Run
Time Error aspect. It isunlikely that the results of this operation will be used to compute some mathematic algorithm. It

is probably a Boolean status flag and if so islikely to be stored and compared to O or 1. The default stub would therefore
have no detrimental effect.

File: connection_lib Function : Lib_connection_open
Param i n T _connection in_cnx->cnx_id is the only parameter used to open
*i n_cnx t he connection, and is a read-only paraneter.

cnx_id, port and data remnain unchanged

Param i n/ out None

returns I nt 0 : failure of connection establishnment
1 : success

H Note Default stubbing works here but manual stubbing would give more benefit.
Here are the reasons why:

» For thereturn value, default stubbing would be applicable as explained in the previous example.

e Sincethe structure is aread-only parameter it will be worth stubbing it manually to accurately reflect the behaviour
of the missing code. Benefits: PolySpace Desktop will find more red and grey code.

Note: Even in the examples above, it concerns some C code like; stubs of functions members in classes follow same
behaviour.

Release 2007a+ 116/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents

3.7.1.2.2. Coloured source code example

typedef struct _m{ int a,b; } T,
voi d send_nessage(T *);

voi d mai n(voi d)
{
int i;

= {10, 20};
send_nessage(&x) ;

i =x.b /x.a; // orange with the default stubbing

}

Suppose that it is known that send_nessage does not write into its argument. The division by x. a will

be if default stubbing is used, warning of a potential division by zero. A manual stub which
accurately reflects the behaviour of the missing code will result in a green division instead, thus

increasing the selectivity.

Manual stubbing examples for send_message:

voi d send_nessage(T *) {}

In this case, an empty function would be a sound manual stub.

Release 2007a+
Revision 4.2 vA

117/377

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.7.1.2.3. Specify the call sequence

PolySpace Desktop analyses every function in any order. This means that in some particular situations, afunction
“f” might be called before afunction “g”. In the default usage, PolySpace Desktop assumes that “f” and “g” can
be called in any order. If some actions set by “f” must be executed before “g” is called, writing a main which will
call “f” and “g” in the exact order will bring a higher selectivity.

Coloured sour ce code example

With the default launching mode of PolySpace Desktop, no problem will be highlighted on the following
example. With abit of setup, more bugs can be found.

static char x;
static int vy;

void f(void)

{
y = 300;
}

voi d g(voi d)
{

x =vy; Il red or green OVFL?
}

With knowledge of the relative call sequence between g and f: if g iscalled first, the assignment is green,
otherwise it’ sred. Thanks to the exact call order, an attempt to place 300 in a char fails, displaying ared.

Example of call sequence
voi d mai n(voi d)

{
f()
a()
}

Simply create amain that callsin the desired order the list of functions from the module.

Release 2007a+ 118/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.1.2.4. Constraint for data

 Default behaviour of global data
Initially, consider how PolySpace handles the analysis of global variables.

There is a maximum range of values which may be assigned to each variable as defined by its type. By
default, PolySpace assigns that full range for each global variable, ensuring that a meaningful analysis
of such a variable can take place even when the functions that write to it are not included. If a range of
values was not considered in these circumstances, such a variable would be assumed to have a value
of zero throughout.

This default launching mode is often adequate, but it is sometimes useful to specify that the range of
values which may be assigned to some variables is to be limited to what is appropriate on a functional
level. These ranges will be propagated to the whole call tree, and hence will limit the number of
“impossible values” which are considered throughout the analysis.

This thinking doesn’t just apply to global variables; it is equally appropriate where such a variable is
passed as a parameter to a function, or where return values from stubbed functions are under
consideration.

To some extent, the effectiveness of this technique is limited by compromises made by PolySpace to
deal with issues of code complexity. For instance, it cannot be assumed that all of these ranges will be
propagated throughout all function calls. Sometimes, perhaps as a result of complex function
interactions or constructions where PolySpace is known to be imprecise, the potential value of a
variable will assume its full “type” range despite this technique having been applied.

e Constraining the data

PolySpace experience is that restricting such as global variables to a functional range is a useful
technique. However, it is not always fruitful and it is therefore recommended only where its application
is not too labour intensive — that is, where its implementation can be automated.

The technique therefore requires
o A knowledge of the variables and the maximum ranges they may take in practice.

o A data dictionary in electronic format from which the variable names and their minimum
and maximum values can be extracted.

Applying thetechnique

Create the range setting stubs:

Release 2007a+ 119/377
Revision 4.2 vA

* create 6 functions for each type (8,16 or 32 bits, signed and unsigned)

e declare 6 global volatile variables for each type

» write the functions which returns sub-ranges (an example follows)
Gather the initialisation of all relevant variables into a single procedure

Call this procedure at the beginning of the main. This should replace any existing initialisation code.

* Integer example

volatile int tnp;
i nt pol yspace_return_range(int mn_value, int max_val ue)
{

int ret_val ue;

ret _value = tnp;
assert (ret_val ue>=m n_val ue && ret_val ue<=nmax_val ue);

return ret _val ue;

}
void init_all(void)
{
x1l = pol yspace _return_range(1l, 10);
x2 = pol yspace_return_range(0, 100);
x3 = pol yspace_return_range(-10, 10);
}
voi d mai n(voi d)
{
init_all();
whi | e(1)
{
I f (tnp) functionl();
if (tnp) function2();
11
}
}
Release 2007a+ 1201377

Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

3.7.1.2.5. Recoding of some specific functions
Once data ranges have been specified (above), it may be beneficial to recode some functions in support of them.

Sometimes, perhaps as a result of complex function interactions or constructions where PolySpace is known to
be imprecise, the potential value of a variable will assume its full “type” range data ranges having been restricted.
Recoding those complex functions will address this issue.
Identify in the modules:

* APl which read global variables through pointers

Replace this AP

t ypedef struct _points {
int x,y, nb;

char *p;

T

#defi ne MAX Calibration_Constant 1 7
char Calibration_Constant_ 1[MAX CALIB 1] = { 1, 50, 75, 87, 95, 97, 100} ;
T Constant_1 = { 0, O,

MAX Cal i brati on_Const ant,

&cal i bration_constant _1[0] } ;

int read_calibration(T * in, int index)

{

if ((index <= in->nb) && (index >=0)) return in->p[index];
}

voi d interpolation(int i)

{

int a,b;

a= read_cal i bration(&Constant _1,i);

}

with this one

Release 2007a+ 121/377
Revision 4.2 vA

char Constant_1 ;
#define read_calibration(in,index) *in

voi d mai n(voi d)

d

Constant _1 = pol yspace_return_range(1, 100);
}

voi d interpolation(int i)

{

int a,b;

a= read_calibration(&Constant _1,i);

}

* Points in the source code which expand the data range perceived by PolySpace
» Functions responsible for full range data, as shown by the “Value on assignment” (voa.) feature.
if direct access to data is responsible, define the functions as macros.
#define read_from data(paran) read_from dat a##param
int read_fromdata_my_gl obal 1(voi d)
{ return [a functional range for ny_globall]; }
Char read_fromdata_ny_ gl obal 2(voi d)
{ }

* stub complicated algorithms, calibration read accesses and API functions reading global data — as
usual. For instance, if an algorithm is iterative - stub it.
* variables
§ where the data range held by each element of an array is the same, replace that
array with a single variable.
§ where the data range held by each element of an array differs, separate it into
discrete variables.

Release 2007a+ 122/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.2. Approximations made by PolySpace

Related subjects:
3.7.2.1. Volatilevariables

3.7.2.2. Structures with volatile fields
3.7.2.3. Absolute addresses

3.7.2.4. Pointer comparison

3.7.2.5. L eft shift on negative variables
3.7.2.6. Some bitwise operators
3.7.2.7. Bitfieds

3.7.2.8. Float loops

3.7.2.9. Shared variables

3.7.2.10. Array of function pointers
3.7.2.11. Trigonometric functions
3.7.2.12. Unions

3.7.2.13. L oop exit conditions
3.7.2.14. Constant pointer

Release 2007a+ 123/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.1. Volatilevariables

Volatile variables are potentially uninitialised and their content is always full range.
2 int volatile test (void)

3 {

4 vol atile int tnp;

5 return(tnp); [// NV orange: the variable content is full range[-
2731; 2731- 1]

6 }

In the case of a global variable the content would also be full range, but the NIV check would be green.

Release 2007a+

124/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.2. Structures with volatile fields

In this example, athough only the b field is declared as volatile, in practice any read accessto the “a” field will
be full range and

2 t ypedef struct {
3 int a;

4 volatile int b;
5 } Vol Struct;

Release 2007a+ 125/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.2.3. Absolute addresses

Both reading from, and writing to, an absolute address leads to warning checks on the pointer dereference. An
absolute address is considered as a volatile variable.

Val = *((char *) OxOF00); // . access to an
absol ut e address

Release 2007a+ 126/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.4. Pointer comparison

PolySpace is a static tool analysing source code. Memory management concerns dynamic considerations, and the
characteristics of particular compilers and targets. PolySpace therefore doesn’t consider where objects are
actually implanted in memory

5 int *i, *j, k;
6 i = (int *) OxOFO0O;
7 j = (int *) OxOFFO;
8
9 if (1 <) [/l the condition can be true or false
10 k = 12; // this line is reachable
11 el se
12 k =23; // this line is reachable too.
It sthe same situation if “i” and “j” pointsto real variable
6 I = & one_vari abl e;
7] = & anot her _one;
9 if (1 <) I/ the condition can still be true or false

Release 2007a+ 127/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.5. Left shift on negative variables

Consider the example below.
* When the option -allow-negative-operand-in- shift is not used, PolySpace gives ared error on
the SHF check because behaviour is compiler-dependant.

* When the option -allow-negative-operand-in- shift isused, y is always full range even if the
signed value of x is known.

4 char x, v;
5 X = 0Ox8F;
6 =x << 3 ; /]
Release 2007a+ 128/377

Revision 4.2 vA

Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

3.7.2.6. Some bitwise operators

PolySpace results are not equally precise with all bitwise operators - AND, OR, XOR, and NOT (resp. &, |, ™))

1 i nt random ui nt (void);

2

3 void test (void)

4 { unsigned int varl, var2, var3;

5 var 1=0; var 2=0;

6

7 [l precision with zero on values with AND bitw se operator
8 var 3= 0x01 & var Z;

9 if (randomuint()) assert(var3==0); /| ASRT Checked
10 var 3= 0x02 & OxF3;

11 i f (randomuint()) assert(var3==0x02); // ASRT checked

12 /1 Full range with other val ues

13 var3 = random uint();

14 var3 = var3 & 0x02;

15

16

17 [l Full range on values with OR bitw se operator

18 var 3=var 1| var 2;

19

20

21

22 /1 Full range on values with XOR bitw se operator

23 var 3=var 1*var 2;

24

25

26

27 [l precision wth zero val ues on NEGATI VE bitw se operator
28 var3 = ~varl

29 I f (randomuint()) assert(var3==0xFFFFFFFF); // ASRT checked
30 [l precision on values with NEGATI VE bitw se operator
31 var3 = ~0xAE;

32 i f (randomuint()) assert(var3==0xFFFFFF51); // ASRT
checked

33}

Release 2007a+
Revision 4.2 vA

129/377

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.7. Bitfieds

PolySpace considers a bitfield to be a permanently full range variable.

4 t ypedef struct _x
5 { unsigned int a:l1;
7 unsigned int b:1; } bit;
12 i nt mai n(voi d)
13 { bit z
14 z.b = 0;
15 z.a = 1;
16
Release 2007a+ 130/377

Revision 4.2 vA

Previous

PonSpace

TECHNOLOGIES

Back to table of contents

3.7.2.8. Float loops

Values on constructions are less precise when floats are used in loops.

M= © 0~
)

Release 2007a+
Revision 4.2 vA

int i;
double X = 0.0;
/'l less precision on float evaluation in | oops

for (I =0 ; I < 6; |++)
X = X + 10. 56; Il

/1 VOA says 10.561 >= EXPR >= 10.559 OR EXP >= 21.119

131/377

Previous

PonSpace

TECHHNOLOGIES
Back to table of contents Next

3.7.2.9. Shared variables

At the minimum, a shared variable contains a union of all rangesit can contain among the application. At the
maximum, the variable will be full range.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Release 2007a+
Revision 4.2 vA

voi d p_taskl(void)

{

}

begi n_cs();
X = 0;
if (X {
Y = X; [l Verified NIV, even it should be grey

}

end _cs();

voi d p_task2(void)

{

begi n_cs();
X = 12;
Y = X + 1; /1 Verifier considers [X==1] or [X==13]
if (Y == 13)

Y = 14;
el se

Y =X-1; [l Verified checks even it should be grey
end_cs();

132/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.2.10. Array of function pointers

In the following example, PolySpace results show an orange check despite the test for a NULL function
pointer test. However, it does accurately track the functions being called.
18 ptr _func array _func[] = {

19 fl,

20 f2,

21 NULL,

22},

23

24 void main(void)

25 {

26 i nt I ;

27

28 i = 0;

29 while (I < 3) {

30 if (array_func[i] !'= NULL)

31 array_func[i]();

32 I ++;
33 }

Release 2007a+ 133/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.2.11. Trigonometric functions

With all trigonometric functions such as cosines, sines etc., PolySpace always assumes that the return value is
bound between the limits of that function — irrespective of the parameter passed to it. Consider the following
example, which uses acos, sin and asin functions.

7 doubl e res;

8

9 res
10

11

12 res
13

14

15 res
16

sin(3.141592654) ;

asin(0.0);

acos(0.0);

Release 2007a+ 134/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

3.7.2.12. Unions

It is recognised nonetheless that there are situations in which the careful use of unions is desirable in
constructing an efficient implementation. Nevertheless, the kinds of implementation behaviour that
might relevant are:

. Padding: padding could be inserted at the end of an union.

. Alignment: members of any structures within union could have different alignments.

. Endianness: whether the most significant byte of a word could be stored at the lowest or highest

memory address.
. Bit-order: bits within bytes could have both different numbering and allocation to bit fields.

This why PolySpace can lose precision when structure unions are considered. Indeed this kind of
implementation is compiler dependant. Conversions from one type a union to another will cause a loss
of precision on two checks:

. Is the other field initialized? NIV

. What is the content of the other field? VOA

typedef union _u {
int a;
char b[4]; } ny_union;

my_uni on X;
X.b[0] =1; Xb[1] =1; Xb[2] =1; Xb[1l] = 1;

if (X A == 0x1111)
else // both branches are reachabl e

Release 2007a+ 135/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.13. Loop exit conditions

PolySpace is more precise in loops where a test other than “does not equal’ is used. Consider the loop
index exit val ue in the following examples.

The orange check in this example ...:

4 x = 0;

5 Wiile (x I'= val ue)
6 {

7 .y

8 X++;

9 }

is not evident here...:

5 Wiile (x <= val ue)
8 X++;
Release 2007a+ 136/377

Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.2.14. Constant pointer
To increase PolySpace precision where pointers are analysed, replace
const int *p = &y;
with
#define p (&y)

Release 2007a+ 137/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.3. Variables

Related subjects:
3.7.3.1. How arevariablesinitialized?

3.7.3.2. Data and coding rules
3.7.3.3. Variables. Declaration and definition
3.7.3.4. How can | model variable values external to my application?

Release 2007a+ 138/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.3.1. How are variables initialized?

Consider external, volatile and absolute address variable in the following examples.

. Extern

PolySpace works on the principle that a global or static extern variable could take any value within the
range of its type.
extern int Xx;

int y;
y =1 x; I/ because x ~ [-2731, 2731-1]
y =1/ x; /Il green because x ~ [-2"31 -1] U1, 2731-1]

Refer to “Reviewing code coloured by PolySpace ” for more information on colour propagation.

For extern structures containing field(s) of type “pointer to function”, this principle leads to red errors in
the viewer. In this case, the resulting default behaviour is that these pointers don’t point to any valid
function. For results to be meaningful here, you may well need to define these variables explicitly.

. Volatile

volatile int x; [/ x ~ [-2731, 2731-1], although x has not been
initialized

. If xis a global variable, the NIV is green

. Ifxisa , the NIV is always orange

* Absolute addressing

The content of an absolute address is always considered to be potentially uninitialized ():

#define X (* ((int *)0x20000))

« X = 100;

e y =1/ X Il NNVon Xis
e int *p = (int *)0x20000;

e *p = 100;

e y =1/ *p; I/ NIVon *pis

Release 2007a+ 139/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.3.2. Data and coding rules
Datarules are design rules which dictate how modules and/or files interact with each other.

For instance, consider global variables. It is not always apparent which global variables are produced by agiven
file, or which global variables are used by that file. The excessive use of global variables can lead to resulting
problemsin adesign, such as

* File APIs (or function accessible from outside the file) with no procedure parameters,

» Therequirement for aformal list of variables which are produced and used, as well asthe
theoretical ranges they can take as input and/or output values.

Release 2007a+ 140/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.3.3. Variables: Declaration and definition

The definition and declaration of a variable are two discrete but related operations which are frequently confused.

Declaration

» for a function, the prototype : i nt f (voi d);
. for an external variable : extern i nt Xx;

A declaration provides information about the type of the function or variable. If the function or variable is used in
a file where it has not been declared, a compilation error will result.

Definition
» for a function : the body of the function has been written : i nt f(void) { return O; }

» for avariable : a part of memory has been reserved for the variable : i nt x; or extern
i nt x=0;

When a variable is not defined, the - al | ow undef - vari abl e is required to start the analysis. Where that

option is used, PolySpace will consider the variable to be initialized, and to potentially take any value in its full
range (see PolySpace and variables initialisation section).

When a function is not defined, it is stubbed automatically.

Release 2007a+ 141/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.3.4. How can | model variable values external to my application?

There are three main considerations.

* Usage of volatile variable;
* Express that the variable content can change at every new read access;
* Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect following axiom:
"if I write a value V in the variable X, and if I read X's value before any other writing to X occurs, I will get V."

Thus the value of a volatile variable is "unknown". It can be any value that can be represented by a variable of its
type, and that value can change at any time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because the value may have changed
between one read access and the next.

Note that although the volatile characteristic of a variable is also commonly used by programmers to avoid
compiler optimisation, this characteristic has no consequence for PolySpace.

int return_random voi d)

{
volatile int random /1l random ~ [-2731, 2731-1], although
/1
Int vy,
y =1 1 [/ because

/'l random ~ [-2731, 2731-1]

random = 100;

y =1 1 /1 because
/1l random ~ [-2731, 2731-1]

return random /'l random ~ [-2731, 2731-1]

l

{

Release 2007a+ 142/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.7.4. Types promotion

Related subjects:
3.7.4.1. An example of an unsigned promoted to signed

3.7.4.2. What arethe promotionsrulesin operators?

Release 2007a+ 143/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.7.4.1. An example of an unsigned promoted to signed
It is important to understand the circumstances under which signed integers are promoted to unsigned.

For example, the execution of the following piece of code would produce an assertion failure and a core dump.

#i ncl ude <assert. h>
int main(void) {
int x = -2;
unsigned int y = 5;
assert(x <=y);

}

Consider the range of possible values (interval) of x in this second example. Again, this code would cause
assertion failure:

volatile int random
unsigned int y = 7;

int X = random

assert (x >= -7 && x <=y);

However, given that the interval range of x after the second assertion is not [-7 .. 7], but rather [0 .. 7], the
following assertion would hold true.

assert (x>=0 && x<=7);
Implicit promotion explains thisbehaviour.

In fact, in the second example x <=y is implicitly:
((unsigned int) x) <=y /* inplicit pronotion because y is unsigned */

A negative cast into unsigned gives a big value, which has to be bigger that 7. And this big value can never be <=
7, and so the assertion can never hold true.

Release 2007a+ 144/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.7.4.2. What are the promotions rules in operators?

Knowledge of the rules applying to the standard operators of the C language will help you to analyse
those and red checks which relate to overflows on type operations. Those rules are:

. Unary operators operate on the type of the operand,;
. Shifts operate on the type of the left operand;
. Boolean operators operate on Booleans;

. Other binary operators operate on a common type. If the types of the 2 operands are different,
they are promoted to the first common type which can represent both of them.

So, be careful of constant types (refer to The type of constants and constant overflows section), and
also when analysing any operation between variables of different types without an explicit cast.

Consider the integral promotion aspect of the ANSI standard. On arithmetic operators like +, -, *, %
and /, an integral promotion is applied on both operands. From the PolySpace point of view, that can
imply an OVFL or a UNFL check.

. Example
2 extern char random char (void);
3 extern int random.int(void);
4
5 voi d mai n(voi d)
6 {
7 char cl1 = random char ();
8 char c2 = random char();
9 int 11 =randomint();
10 int 12 =randomint();
11
12 11 =11 I 2; /'l A typical OVFL/UNFL on a + operator
13 =cl + cz2; /1 An OVFL/ UNFL warning on the cl assignnent [from
int32 to int8]
14 }

Unlike the addition of two integers at line 12, an implicit promotion is used in the addition of the two
chars at line 13. Consider this second “equivalence” example.

2 extern char random char (void);
3

4 voi d nmai n(voi d)

5 {

Release 2007a+ 145/377
Revision 4.2 vA

6 char cl1 = random char ();

7 char c2 = random char();

8

9 cl = (char)((int)cl + (int)c2); [/ Warning UOVFL: due to integral
pronot i on

10 }

An orange check represents a warning of a potential overflow (OVFL), generated on the (char) cast
[from int32 to int8]. A green check represents a verification that there is no possibility of any overflow
(OVFL) on the + operator.

In general, integral promotion requires that the abstract machine should promote the type of each
variable to the integral target size before realizing the arithmetic operation and subsequently adjusting
the assignment type. See the equivalence example of a simple addition of two char (above).

Integral promotion respects the size hierarchy of basic types:
. char (signed or not) and si gned short are promotedtoi nt.

. unsi gned short ispromotedtoi nt onlyifi nt can represent all the possible values of an

unsi gned short. If that is not the case (perhaps because of a 16-bit target, for example) then
unsi gned short is promoted to unsi gned i nt.

. Other types like (un) si gned int, (un)signed |ong int and (un)signed | ong | ong
I nt promote themselves.

Release 2007a+ 146/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.7.5. Built-in functions

PolySpace stubs all functions which are not defined within the analysis. PolySpace provides for all the
functions defined in the stl, in the standard libc, an accurate stub taking into account functional aspect
of the function.

Stubs of stl functions

All functions of the stl are stubs by PolySpace. Using —no-stl-stubs allows deactivating standard stl
stubs (not recommended for further possible scaling trouble).

Note that all allocation functions found in the code to analyze like new, new | , del et e and del et e[]
are replaced by internal and optimized stubs of newand del et e. A warning is given in the log file
when such replace occurs.

Stubs of libc functions

Concerning the libc, all theses functions are declared in the standard list of headers and can be
redefined using its own definition by invalidating the associated set of functions:

 Using —-D POLYSPACE NO STANDARD_ STUBS for all functions declared in Standard ANSI
headers: assert. h, ctype.h, errno.h, locale.h, math.h, setjnp.h(setjnp'
and 'l ongj np' functions are partially implemented — see <pol yspacePr oduct >/ ci ncl ude/
__pol yspace__stdstubs. c),signal.h(signal'and'rai se'functions are partially
implemented — see <pol yspacePr oduct >/ ci ncl ude/ __pol yspace__stdstubs. c),
stdio.h, stdarg.h, stdlib.h, string.h, andtine. h.

 Using-D POLYSPACE_STRI CT_ANSI _STANDARD_ STUBS for functions only declared in
strings. h, unistd. h,andfcntl. h.

Most of the time theses functions can be redefined and analysed by PolySpace by invalidating the
associated set of functions or only the specific function using —-D __ pol yspace_no_<functi on

name>. For example, If you want to redefine the f abs() function, you need to add the —D
__pol yspace_no_f abs directive and add the code of your own f abs() function in a PolySpace
analysis.

There are five exceptions to theses rules The following functions which deal with memory allocation
can not be redefined: mal | oc(), calloc(), realloc(), valloc(), alloca(),

__built_in_malloc() and __built _in_alloca().

Release 2007a+ 147/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4. PolySpace class analyzer process

This paragraph presents a strategy for analyzing C++ classes. This allows the developer to identify,
and possibly remove most of the runtime errors present in a class.
For technical details on how to use PolySpace class analyzer please refer to “Getting started” section.

Related subjects:
4.1. Why providing a class analyzer ?

4.2. Simple class

4.3. Simpleinheritance
4.4. Multipleinheritance
4.5. Abstract class

4.6. Virtual inheritance
4.7. Other types

Release 2007a+ 148/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

4.1. Why providing a class analyzer?

One aim of object languages such as C++ is reusability. A class or a class family is reusable if it is free
of bugs, for all uses of the class. It can be considered free of bugs if runtime errors have been removed

and functional tests are successful. As evidence, the first objective is to remove as much as possible
runtime errors.

PolySpace class analyzer is a mean for removing runtime errors at compilation time. PolySpace will
simulate all the possible use of a class, by:

Creating objects using all constructors (default if no one exists),

Calling all methods (public, static, and protected) on previous objects in any orders,

Calling all methods of the class between zero and an infinity of times,

Calling every destructor on previous object (if they exist).

PN

Release 2007a+ 149/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

4.2. Simple class
On the following class:

Stack. h
#defi ne MAXARRAY 100
cl ass stack
{
I nt array[MAXARRAY] ;
| ong toparray;
publi c:
int Top (void);
int IsEnpty (void);
i nt Push (int newal);
void Pop (void);
stack ();
3
st ack. cpp
1 #i ncl ude "stack. h"
2
3 stack: :stack ()
4 {
5 = -1;
6
7 array[i] = 0;
8 }
9
10 stack::top (void)
11 {
12 i nt =
13 return (array[l])
14 }
15
16 stack::isenmpty (void)
17 {
18 if (>= 0)
19 return fal se;
20 el se
Release 2007a+ 1501377

Revision 4.2 vA

21 return true;

22 }

23

24 stack: : push (int newal ue)
25 {

26

27 {

28 array|] = ;
29 return true;

30 }

31

32 return fal se;

33 }

34

35 stack: : pop (void)

36 {

37 it (>= 0)

38 ;

39 }

The Class analyzer calls the constructor and then all methods in any orders many times.
The analyze of this class with PolySpace Class-Analyzer highlights 2 problems, as shown in previous
Viewer results:

 The st ack: : push method may write after the last element of the array (then the OBAI
orange check at line 28).

» The st ack: : t op method if called before Push will access element -1 (then the OBAI and
NIV checks at line 13).

Fixing these problems will turn the class runtime error bugs free.

Release 2007a+ 151/377
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

4.3. Simple inheritance
Consider classes as follow:

A is the base class of B and D.
B is the base class of C.

In such case PolySpace allows to do the following analysis:

1. The A class can be analysed just by providing its own code to PolySpace. This corresponds to
the previous simple class paragraph.

2. The B class can be analysed by providing B code and A class declaration. In this case A code
will be stubbed automatically by PolySpace.

3. The B class can be analysed by providing B and A codes (declaration and definition). This is a
first level of integration analysis. The class analyzer will not call A methods. In this case
objective is to find bugs in B class code. Bugs in class A are found during previous steps.

Release 2007a+ 152/377
Revision 4.2 vA

4. The C class can be analysed by providing C code, B class declaration and A class declaration.
In this case A and B codes will be stubbed automatically.

5. The C class can be analysed by providing codes of A, B and C classes as an integration
analysis. The class analyzer will call all the C methods but not inherited methods from B and A.
The objective is to find bugs in C class.

In these cases there is no need to provide D class code for analysing A, B and C class as long as they
do not use the class (e.g. member type) or need it (e.g. inherit).

Release 2007a+ 153/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4. Multiple inheritance
Consider classes as follow:

A and B are C base classes.

In such case PolySpace allows to do the following analysis:

1. A and B classes can be analysed separately just by providing there own code to PolySpace.
This corresponds to the previous simple class paragraph.

2. The C class can be analysed just by providing its own code with A and B declarations. A and B
methods will be stubbed automatically.

3. The C class can be analysed by providing codes of A, B and C classes as an integration
analysis. The class analyzer will call all the C methods but not inherited methods from A and B.
The objective is to find bugs in C class.

Release 2007a+ 154/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.5. Abstract class
Consider classes as follow:

FiN
abstract

A is an abstract class

B is a simple class.

A and B are C base classes.
C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed separately from other
classes. Therefore it is not allowed to specify such class to PolySpace class analyzer. Of course, C
class can be analysed in the same way as in previous paragraph.

Release 2007a+ 155/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Back to table of contents Next

Previous

4.6. Virtual inheritance
Consider classes as follow:

B and C classes virtually inherit the A class

B and C are D base classes.

A, B, C and D can be analyzed in way described in previous chapter.
Virtual inheritance has no impact on the way of using the class analyzer.

Release 2007a+ 156/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.7. Other types

. Template
A template class can not be analyzed directly. But a class instantiating a template can be analyzed by
PolySpace. Note: if only the template declaration is provided, missing functions definitions will be
automatically stubbed.

Example:
templ ate<class T > class A {
publi c:
Ti,;
T geti() {return i;}
\ A() i (1) {3}

You have to define a “typedef” to create a specialization of the template:

tenpl ate cl ass A<int >; /1 Explicit specialization
typedef class A<int> ny_tenplate; // conplete instance of the tenplate

and use option —cl ass- anal yzer ny_t enpl at e. It will analyze one instance of the template.

. Class integration
Let’'s consider a C class inheriting from A and B classes and having object members of AA and BB
classes.
Doing a class integration analysis consists in verifying the C class and providing the code of A, B, AA
and BB class. If some definitions are missing PolySpace will stub them automatically.

Release 2007a+ 157/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5. PolySpace C++ add-in for Visual Studio

This paragraph describes the usage of PolySpace for C++ while integrated in the Microsoft Visual C++ .
NET (see The PolySpace Install guide in <Pol ySpacel nst al | Common>/ Docs directory for the exact
compatibility).

The PolySpace C++ add-in for Visual Studio provides automatic source code verification and bug
detection in source code developed inside the Visual IDE®. It includes the following main features:

* An automatic setting of PolySpace project configuration file derived from your Visual
project settings.

* Adirect launching of C++ classes and files analyses from Visual IDE.
* Areport of PolySpace compilation findings back to the IDE.

Related subjects:
5.1. PolySpace usage inside Visual Studio

5.2. Launching an analysis on the entire project

Release 2007a+ 158/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5.1. PolySpace usage inside Visual Studio

The PolySpace for Visual .NET plug-in allows launching C++ analyses inside the Visual C++ IDE
whatever those analyses are local or remote.

Launching options are integrated within the Visual editor through a PolySpace menu and a toolbox.
Note that some components of the plug-in are not automatically docked at installation. They must be

manually moved where user wants them. Next time the interface will open, the components will be at
the same place.

Related subjects:
5.1.1. PolySpace ParametersInside Visual Studio
5.1.2. Your first PolySpace Class analysisinside Visual Studio
5.1.3. The configuration file and default options

Release 2007a+

159/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

5.1.1. PolySpace Parameters Inside Visual Studio

When the PolySpace/Visual C++ plug-in has been installed, a PolySpace toolbar, a PolySpace menu
and two tabs are displayed inside the Visual Studio IDE. Those tools are used to start local or remote
analysis on current classes and files of a Visual Studio C++ project (see next figure) without getting off
your own development environment.

= [HM - Microsoft Visual C++ [design] - CRobot.cpp

Echar Cdton Afchage froet Giodee [Sboges Qutle | PolbSpece | Feplee

A= e i T mEEEE-
2 coobon s+~ [Lt I] o
AL - re— LT L :

o — ! =i 5
o P P p— = =B Dupler PoirSpace Browser

% (5 15! Deplay PokvSpacs Lodg
S ET Hasip
B abo

Nincloder "stdsts.h"
Wursiude “Chokesr . h®

Rl § 1 CRT |

I
Dbis=->Type = HAITEER
thio=5Td = QOp
thig-rilaes = =%
thig->Pacam = T7;

1P e L 4 5T i FE T IO
i CRolear | i EsThams (TETO LD 1NS
w18 CFRobsSt - o Cotlamy [CRtring "po
weid Thobor i iPsvPares (TFITING IR
woid CPabEst - = CotParem [CEEring "E

woid CRObSt: Tt Id[int 1X)
it Chokars derlai
il CRASECSE: cTEType{int 1X)
BE SRkt i 10T TR | |

winkdl CRolear1 Ry Fulst Dan | S
Tiotd = Ehio-Tieoer

d
4 | aﬁl'l:hlqrquﬂ-u:ul:l.-:-m i | -
Prit

PolySpace Toolbar, tabs and PolySpace menu in Visual Studio

The PolySpace Menu and Toolbar
* Click on “Launcher” (or use “PolySpace> Launcher” menu) to open the PolySpace
launcher on the last configuration file updated in Visual.
Note: The consistency is not checked with the current project and a warning message is
always displayed. The “cfg” file could not correspond to “cfg” file of the current project.
 Click on “Spool er " (or use “PolySpace> Spooler") to start the PolySpace spooler. This
tool is used to manage PolySpace jobs that are performed on remote servers.
See “Getting Started section in the PolySpace for C++ documentation”.

Release 2007a+ 160/377

Revision 4.2 vA

* Click on “Viewer” (or use “PolySpace> Viewer” menu) to open the PolySpace Viewer
with the last available results. If the analysis has been done on the server, downloading them

first is required before clicking on this button.

» Display “Display Pol ySpace Browser”and “Di spl ay Pol ySpace Log” allow to see
other Tab (see below).

* Click on “Help” to start the PolySpace for C++ documentation (PDF format).

e Click on “About” to display the release number of the PolySpace for Visual Studio plug-
in.

The “Pol ySpace Log” tab

When an analysis is launched, the “PolySpace Log Window” tab displays the PolySpace progress
report. Compilation error if any, are highlighted as a hyper-link. Click on those links to display the
corresponding file and line number that includes the compilation error.

Click on red X just below the “Pol ySpace Log” header to stop the PolySpace analysis running locally.
If the analysis has been remotely spooled this option will only work during the compilation phase before
the analysis is sent to the server. However, you can use the “Pol ySpace>Spool er ” button and stop

the analysis from the spooler dialog.
% [HM - Microsoft Visual C++ [design] - CRobot.cpp

Euher Edeon AfMchage Propet Géndror [eboguer Culin PolySpacn Fepéeae [
H-H-=HF Ik # Dtuag L. Rttt T s DR R =
ﬂ' e]
[P
P =] [
T ANLE LE 18 im Classe 052 Lite ﬁnﬂ}n.r-h:ﬂr.'.m'-ﬁ:.n Shadc: WET JOCORSIEIN T Y rciade A
1 ghemE At n e oo Pl pcronof Winis Bade WET 00T Tinciliads
dimolude "phdafs, h™ it Py Pl e 26 'wrinadl Thathn RET JO00AE Pialiehs Wtk e
Hinc ke =CBobat . ™ i = Trogres Fies e onof] S Tk W T 00T s Pl STl il
s ; > M= Troagres Flerbceoaod Wil Shade, WET JO0RGIRCe ¥ nciis
s L
Chanie £ 8O Rabor || S g e g
i ina s -gripsirus
chis->Type = RAITEE:
thiip-=Jd = |"'.'"" ir hesl vl
thia->heme =] lemiory = NICRT i 10X
fhid=sPFacam & == Searep = A0 =] 2 b by
i Sl e JTHAAE =
Tep acs genliabie N 'ppsrmiop == (1 Ol (1K) L. 1]
LESTAND18% 1 0H BT TECupEral b i T £ W el O
vald CRebnc | e (COorang
vzid CRohot; retlams [TICr Eng
wraid CRebab: :SrtPacam |5t ing ~reciine FLEXL M dcaris
i
old CPSEbE: tCsEPaZam [CIEEing [HEERNIN R
e o Ay 14 3007 1R BT
wold CHobonrSecldisnt 1X) s i
int CRobsar] (et Id i) ary
void CRokot s PecType | int 23X} " el | woaros complane s ¢ ki
int Rkt ;GatTypail . FTETTI—— il
Crie-tarpel il mgiles 0 SIE TYPE__=rmigred -0 FTROEFT _TYPE__=ri -0 STRSCT AN
514 CFSSSE: CEYFuRET IGAR[LEEE L Or_iniirey __smilire) pagretd __spigrad)i vl =en_ i
spopg = This=nhisese) b P S0uRCE &y STL_CLASS PARTAL CPECALTATION
i s Wobypacs B 1 0y el 'S husde ! vl
e E3OE
Wiy Wl Csa T sowncen
L
d
| B I
prlie=— LI - * 18 Poivspace Log | w4
Prit

The PolySpace Log Window

The “Pol ySpace Browser” tab

The “PolySpace Browser” tab displays classes and files of the project on which PolySpace can perform
analyses. A dynamic link is established between classes and files of the project and the “PolySpace
browser” window. All classes available in the project are accessible in the browser (see picture below)

Release 2007a+ 161/377
Revision 4.2 vA

% HM - Microsoft Visual C++ [design] - CRobot.cpp

Exredr Ednon Afchege Propt Gedsesr [bboguer Cutis FolSpece Fopire [
B-n- @3 L » Dobug = ol Erereamb o
B vm m hmarn | r _n
& =| |- - HED w0
PEEINITISN B 18 olasss O E.':-:I-.-'-'u'l-th:--w.ll
Kirsiude “srdabs.h® i -i:‘:' o e 2
e i - - g - E
Naneclude SCRolESt.h q':‘ T
&
Pl = = CReE | | _,E -“':3;:::—'}
i v
this=>Typs = MAITRE: .,.5_ Clwesitern
chis->1d = OF s = ——
thiz-rllamss = ':: -u-:. Dl e
Chig->Paras = I B [E ks
L * CE e
4 CTHA
Tt 1T nipm Tt ‘\'-";- [alT1%
w1l CRobSt: cTatNamy [T3tr 35 ""'; LiH M nferince
wold CRoleot | DOt NaRE SR LR #a FiHdy
w518 ChobeSt o Eet Facem | D5t iog "':: CPaiald
i Cholet | pSe T Farss [CEFCT I _"‘:F ?;F"-'-""'
g L
A
ol CROEXLI IS4 Td (AN 1K) *LET-M'
iot CRobsikzCeiEId|] | ||
'\-“r (=] |
woid Tholerl sBetType (16t 21X __,._ E:‘"‘
Imt CRaEstz et Typr || -\.i -
T Frligtlarec
""': sl anig
woid CRobot: tEYFurct iom |C5tria P i i
i
FLoto = Chia-Eae -.=: [T
I d 4 File
- lal |]
s
a | 2| B Bt posace svowa [0 e
Prid

The PolySpace Browser window

Select a class or a file and apply right click to get class specific pop-up menu:

. Select the “Pol ySpace Anal ysi s” option to launch an analysis on all selected classes and
files in the “PolySpace Browser” tab.

. When a class is selected, the “Open” option opens the file which contains the declaration of the
class into the Visual Studio IDE. When a file is selected, this option opens it in Visual Studio.

If you right click on the project name, another pop-up menu appears (see below):

. Selectthe “Edi t Pol ySpace Confi gurati on” option to launch the PolySpace Launcher on
the associated cfg file of the Visual project. It updates the PolySpace Configuration file located
in the project directory. It is possible to add some more options than theses implicitely extracted
from the Visual project (see “default options”).

. Selectthe “Gener at e Pol ySpace confi gurati on”field menu to update the PolySpace
Configuration file. Be aware that it will remove the previous cfg file if it exists.

Release 2007a+ 162/377
Revision 4.2 vA

= CppExample - Microsoft Visual C++ [design] - CppExample

Release 2007a+
Revision 4.2 vA

Euokaw Edoon Affchegs Zropt Ghideer Dehoguer ol PolSpacs Fagiive [
B-n-c WP LR |- BN ooy = g ereresmEnf e & - e Rt .
R o e o Cppixamplepp | .]
T rhi T = 7
Al) =] [* - HES wo E
k q ~ e 5 0ktn ™ [T e G
= # St iskhles glohales : == o £
i HINETARCE nhines. = i
TCHAR SETITLe[MAX_LOADITRING] 1 i e it o s ol B
TCHAR ariirdort lasa{HAX LOKDSTRAING] ; - Mt
b ﬁ‘.s ;
o Pre-diclacationa ded fanctions Lfholusss idans i a "_IFi1
ATOR AyRegLesers Lass (HEHITAHCE hilns
Bl InlElnakpanen (HINOSTANCE, ipk);
LEEEULT CalLEaCE UndFroo (HMND, UINT, WPARAH, LI
LEESULT CALLBRCK kbaut (HEWD, UINT, WFLRAN; LPAE
int APIINTREY ENLoNAin(HINSTANCE hinatanca,
HEHATANCE hPrevinscanos,
LPFTATR LpCmdlinm;
LAL [T R UTR]
L
IJs I"i" pladEl ol LE Cods,
HDS mrg;
HACSEL nbecelTable)
f4 Inlcus-lee led Chainss gloDales
LemdString (hinatance,; [0 APF TITLE, azTitle;
Legdfrrinyihinscancs, I[BC_CFPEXANPLE. se¥indos
ARSI LITETL LSS (AIRITARDE) |
Bffectae L' inlnialisasion de L' applicacion
3f |'Init-ndtance (hlipatance, olxdShow]) |
[
cvturas FALIEL:
I
| wl|E
! | IR T T | re
Prin
The pop-up menu on the project name

163/377

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

5.1.2. Your first PolySpace Class analysis inside Visual Studio

Start your first analysis step by step:
. Create a new project space (use “Fi | e>New>Pr oj ect >New’ menu), select “Pr oj ect Consol e

W n32”, type the name “CppExanpl e” and save it under an adequate location. For example: “C.
\ Pol ySpace\ Vi sual . Some files and a Project Console Win32 is created.

« Add“matri x.cpp”and “mat ri x. h” located in <Pol ySpacePr oduct >/ Exanpl es/
Deno_Cpp_Long/ sour ces to the “CppExanpl e” project (goto tab “Br owse t he sol uti on”,
right click into the project name and use “Add>Add exi sti ng el enent ..” pop-up item).

. Gointo “Pol ySpace Browser”, expands “CppExanpl e>CppExanpl e>Cl asses”, select the
“Mat ri x” class and right click on “Pol ySpace Anal ysi s” (See next figure).

® CppExample - Microsoft Visual Ce+ [design] - CppExample.cpp
Exckar Eden Affchage Fropd Géndeer [eboger Cuoh PolySpace Fedee

R-n-FE @ L& b Dibeg = g sreirmembuf rREERB-, .
» [rer——— oo :x[}
I =l e -] HEO wo]
—] e 3ok " [prrgeot]
Warishles glohales = ::W'Ew
HTRNTARST hTrar = il Clasied
. M
TCRAR seTicls RAX_LOMATRING]) -
TCHAR acWirddowClaos [MAX LOADITRING] ¢ '\-“:Em
. o = |
— %2 v N Con
f Pre-A8c1latat ions di t an 4| 5 R
ATOR Hﬁ'ﬁtnlﬂ -r:'l'lv:‘l H[H-\.-'I.'.HITE hlng
| i B Ipnitlpatance (HINSTANCE, ink);
LEERULT CalLEBack WndFroo (HNHE,. DINT. WFARAR, LF
LEESULT CALLEACK About (HEND, OINT, WNPARLAN, LPAF

int APIENTREY cHinHain(HINSTANCE hinatance,
HENATAHCE hPrevinstanoe,
LPTATR lpCedling,
LAT nEmd3hnug)

= places i L& i
HSG mag;
HAGCEL hibeoelTabla)
InitisiiEe le@ chalneEs globales
LesdStr irgihlinatance, IDE_AFP_TITLE, azTitle,

Losaftrang ihlnsnanos, [DG l.'PF‘EiMHI‘LE LELRY T
Rykegisters lass (hInstsnoe)

Effertaee |° iALnialL#An Lon d& L' applloas Lo
£ |'Initlnstance (hinakance, nCedShow)
i

foburd FALSE:

wl|€]

Priit
A dialog box labelled “Pol ySpace Basic Settings [C++]”is displayed so you can set some default

pieces of information including precision of the current analysis and a result folder (See next figure).

Release 2007a+ 164/377
Revision 4.2 vA

Ei PolySpace basic settings [C++]

Settings

Precision 2

Passes PassZ (Software Safeky Analysis level 2)

Parameters

Results directory CiPaolySpace_Results

Function called before main

Main generator write variables 1Llninit

Class analysis | (S} File analysis Main analysis

Class]Matr’i:-:

Class analyzercalls ILInused

[¢] Class only

Scope

Files _ _ 1
civPolvSpaceyPa 15\ExamplesiDermo Cpp Longisourcessmatrix.c

cPolySpace’\P4.1\ExampleshDermo_Cpp_Longhsourcessmatrix,h

¢l Remote mode (¥} Execute | (o3 Cancel

The Pol ySpace Basic Settings [C++] w ndow

Then select some basic options for the current class analysis:
« Sub window “Set t i ngs” allow to select precision (-0/-quick) and level of analysis (-to);

« Sub window “Par anet er s” allow to select:

o the results directory (-results-dir); the name of a function, if any, called before all functions (-
function-call-before-main) and the type of initialisation for global variables (-main-generator-
writes-variables).

o By default the “Cl ass anal ysi s” Tab enables the class analysis with default options: the
class to analyse (-class-analyzer) and associated options which can change behaviour of the
analysis (-class-only and —class-analyzer-calls).

o You can chose a partial integration analysis by using the “Mai n anal ysi s” tab allowing to
choose the name of the “main” (-main).

Release 2007a+ 165/377
Revision 4.2 vA

o You can also choose a file analysis (by ticking the “File analysis” Tab) with associated option
(-main-generator-calls).

. Sub window “Scope” allows to give the list of files and classes which are used with the analysis.

When more than one class is selected, PolySpace selects in an automatic way the list of cpp files
from the project to add to the analysis.
Then, Click on “Execut e” to proceed. The progress of the analysis can be followed in the “Pol ySpace

Log” window and later using the PolySpace Spooler if remote launching has been enabled.

Release 2007a+ 166/377
Revision 4.2 vA

Previous

PonSpace

TECHNOLOGIES

Back to table of contents

5.1.3. The configuration file and default options

Some options are set by default and some others are directly extracted from the Visual project and set
in the associated PolySpace configuration file.

* The list of Visual options extracted from the project file is:

Visual Option PolySpace Option
D <nanme> - D <nane>
U <nane> - U <nane>
MI -D M
Mrd -D_MI' - D_DEBUG
VD -D MI' -D DLL
MDd -D MI' =D DLL - D _DEBUG
M_d - D_DEBUG

Zc:wchar _t

-wchar-t-1s keyword

Zc:1TorScope

-for-1oop-1ndex-scope In

FX

- support-FX-option-results

Zp[1, 2, 4, 8, 16]

- pack-al i gnnent -value [1, 2, 4, 8, 16]

» Sources and includes directories (-I) are also extracted automatically from Visual

options.

» Default options passed to the kernel depends of the Visual Studio release: -

di al ect Visual 7.1 (or—di al ect visual 8)-0S-target Visual
I 386 -desktop

-t ar get

Standard PolySpace options like - voa, can be set by clicking on the “Launcher” right click menu (or

from the PolySpace menu).

It starts the standard graphical interface polyspace-launcher on a particular PolySpace configuration

file (with .cfg extension).

Every option selected, will be taken into account during the analysis, except the list of options set in the
“Pol ySpace Basic Setting [Ct++]” window.

Release 2007a+
Revision 4.2 vA

167/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5.2. Launching an analysis on the entire project

The launching of PolySpace on an entire project can only be made through the PolySpace Launcher
using the “Launcher” command. In this case, the option —main must be set manually.

Release 2007a+ 168/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

6. PolySpace UML Link RH

While using Collaborative Model-Driven Development, run-time errors can be caused either by design
issues in the model itself or faulty hand written code. These reliability flaws can sometimes be found
using code reviews and intensive testing — but these techniques are time-consuming and costly.
PolySpace saves you both time and money by performing an exhaustive verification of the code and
automatically flagging flaws directly in the original Rhapsody model, enabling developers to fix these
issues quickly and early during the design process.

Related subjects:
6.1. Getting Started

6.2. PolySpace Panel
6.3. Installing the I ntegration into an existing model
6.4. Other Topics

Release 2007a+ 169/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

6.1. Getting Started

The getting started guide takes you through the steps required to analyze a model.

Note that the PolySpace plug-in has already been integrated into the example model. Before other
models can be analyzed the plug-in may need manually installing into the Rhapsody project directory.
During the getting started the following conventions will be used: “<Pol ySpacel nst al | Common>" will
refer to the installation location of the PolySpace common folder.

Related subjects:
6.1.1. Step 1 - Open and display the example air bag model

6.1.2. Step 2 - Starting an analysis
6.1.3. Step 3- The Start Analysis Panel
6.1.4. Step 4 - Navigating from the PolySpace results to the Rhapsody model

Release 2007a+ 170/377
Revision 4.2 vA

PonSpace

TECHHOGLOGIES

Previous Back to table of contents Next

6.1.1. Step 1 - Open and display the example airbag model
1. Open the ai r bag_CPP. r py model in “<Pol ySpacel nst al | Coomon>/ Pol ySpaceUM_Li nk/ exanpl e”.
1. Open the PolySpace Panel by expanding the package list and right click on “Ai r BagFi | es”, select

“Pol ySpace Panel ” from menu.

—_— = mmm—— Bl —_—

;”E__I;._

o | -
o g PolySpace Pansl 3 |
I (=] Components
'f —I PolySpace For Rhapsody ») =
| 11 Packages Varpion: prodect 4 27 Y Spid -
Yo =
I W] Externs Festures
W L] Predefr Features in New Window PolySpace Analysis [») Start ki Stop |
B Predefir -
% (] Frofles Addhew ¢
= ,'__I Use Cace i mmm’ﬁ--- “ﬂfhﬂﬂt Emm
Search.,.
Search inside... PalySpace =T
References... Configurabon S
Uit L]
o 3
Change Quewse Manager [manage Analyses =
Generale
Edit Code
Roundirip PolySpace Viewer [1J ViewLastResuits | (5 Browse For Results
Edit Type Order...
Configuration Management
5 Documentabaon i) Help
Assocate Image
Delete from Mode! w3 Close B
PolySpace Pamsl =] T meﬂ'ﬁzf

The PolySpace Panel is the interface to the PolySpace UML Link RH within Rhapsody.

Release 2007a+ 171/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES

Back to table of contents Next

Previous

6.1.2. Step 2 - Starting an analysis

. Click on the Start button in the PolySpace Panel.
For the first analysis of the model, or if the Rhapsody configuration environment changes, the Build Environment

Settings dialog will be displayed.
The operating system target (-OS-target) is set automatically from the model's environment. When the Li nux

environment is detected the dialect will be set to default (—dialect) and include directory will be configured to use
the Linux header files supplied with PolySpace.

Build Environment Settings - New Analysis Detected 1 EI
FolySpace needs some key information before starting,

Enter the C++ dialect you are using and the indude directory to your operating system, or compiler indude files:

OS-Target; | nux {From Rhapsody Build Environment)
Dialect: | default j o)
Indude Directary: Z:\PalySpace \PolySpaceForCandCPP_LD4. 2.0, 3VWerifierindudelindude-inux '-".'.:'E'l

Mote: This dialog is only shown for the first analysis in a model or when the Rhapsody build environement is changed,
The settings entered on this form can also be modified by using the Configuration option from the PolySpace panel.

oK | @ Cancel |

. Select “OK".
Note: Make sure that the generated code for the model is up to date before starting an analysis.

172/377

Release 2007a+
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents

6.1.3. Step 3 - The Start Analysis Panel

The “St art Anal ysi s” panel allows the selection of the type of analysis (Analysis frame) class to in the model

analyze (in the Scope frame), and analysis options (Settings frame).

Note that the results directory is set automatically when the class to analyze or analysis mode is changed.

Set the options as they are shown below:

Start Analysis i

Setiings

Predision Level: ﬂ To Pass: I Software Safety Analysis level 2 j

Results Directory | pegits AirbagControl_C

Analysis Mode
Functions Called: Variables Written:

W Class Analyzer [)0 g =| | uninitaised =]

Scope

Class to analyse: I AirbagControl_C j ¥ Single Class Only

Analyze with (highlight dasses):

[¥ Remote Mode (») Execute |

Select the Execute button - if no remote PolySpace Server is available deselect the “Renpt e Mode” option and the

analysis can be performed locally.

A command window will be displayed during which the phases of the analyses performed locally can be viewed:

Release 2007a+
Revision 4.2 vA

173/377

sud e

EE

FEA RS R EER
Bo—taprget | bmus

Note: The settings (size of window, number of lines of history, font etc) for the command window can be changed
by right clicking on the window title and selecting properties. It follows standard settings of the “Command
Windows” associated with Windows OS.

The following of the analysis on the server, if the “Renpt e Mode” has been ticked, can by clicking on the “Manage
Anal yses” button in the PolySpace panel which will display the PolySpace Queue Manager interface (or Spooler).
When the analysis has completed download the results and when prompted open with the PolySpace Viewer.

Release 2007a+ 174/377

Revision 4.2 vA

Previous

PonSpace

TECHHNOLOGIES
Back to table of contents

6.1.4. Step 4 - Navigating from the PolySpace results to the Rhapsody

model

Navigate to the first red error, a non initialized variable detected in the model at line 104 of Airbag
Control_C and right click. From the pop-up menu select “Back to Model .

™ Ccalls

b

F Complete

l: lmd=ta »n calacti;nm

L

a7

28

23

laono
101
1oz
103
1lo4
lak
los
1a7
las
1o
110

Kl

=2 AirbagControl.cpp

FrE]

vold AirbagControl C::ReadEntry() |

FAE[operation BeadEntry()

int new_altitude:;

ArmedEntryifiew altitudes) ;

i‘-‘— 1 AjrhagCor

] variables Yiew
|'!." | P P

o i .

[n "AirbagControl.cpp” line 104 column 15

Source code
| brmedEntry (new altitcude) ;

Error : local wvariable iz mot indtialized (type: int 32)

if (new altitude == true) o
: l-__j-'fr-f Back to model
*ourrent data = 100; % Print Yiew - Source code AirbagControl,. cpp
' @ty Search in source code
el=ze
i 4= Gota line
*rurrent, data = 1000 i_reakte spawn...

Organize Desktop, ..

CErl+5
Chrl4+L

Important Note: for the "Back To Mbdel " feature to work Rhapsody must be running with the model

open.

This will cause the code to be located within the Rhapsody model. Depending on the Rhapsody
configuration this will either be shown in a popup dialog (such as shown below) or in the code view:

Release 2007a+
Revision 4.2 vA

175/377

Primitive Operation : ReadEntry in AirbagControl

Genemll Description Implementation |Pu'guments| Relations I Tags I Pmpertiesl

void ReadEntng()

int new_altitude;

-

armedEntry (new altitude);
if (new altitude == true)
*current data = 100;
i.
else
“current data = 1000;

<] |

Lucatt:l oK | Apply ||

This is the end of the getting started guide.

Release 2007a+
Revision 4.2 vA

176/377

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.2. PolySpace Panel

The PolySpace Panel is the main interface of the PolySpace integration with Rhapsody. The Panel can be started
by right clicking on either a package or a class in the Rhapsody “Entire Model View” and selecting PolySpace

Analysis.
x

PolySpace For Rhapsody S

Version: product_ 4 2-2 PO%Y P., S
PolySpace Analysis (») Start X Stop |
View log file @ Compilation Log

Ezl:ggpﬁrc:ﬁnn Configure

Queus Manager E Manage Analyses

PolySpace Yiewer E View Last Results (= Browse for Results

Diocurmentation i) Help

%9 Close |

“Start” Button
The “St ar t ” button is used to start an analysis.
Either for the first analysis of the model, or if the Rhapsody configuration environment has changed since the last
analysis the “Bui | d Envi ronment Setti ngs” dialog will be displayed:

Release 2007a+ 177/377
Revision 4.2 vA

Build Environment Settings - New Analysis Detected EI

PolySpace needs some key information before starting,

Enter the C++ dialect you are using and the indude directory to your operating system, or compiler indude files;

OS-Target: | 'nux {From Rhapsody Build Environment)
Dialect: | default _j) |
Indude Directory: Z:\PolySpace\PolySpaceForCandCPP_L.D4, 2.0. 3 Werifierindudelindude dinux 5'|

Mote: This dialog is only shown for the first analysis in a model or when the Rhapsody build environement is changed,
The settings entered on this form can also be modified by using the Configuration option from the PolySpace panel.

oK | 1(3 Cancel |

The Operating System Target (-OS-target) is detected automatically from the active Rhapsody build environment.
Select the appropriate C++ dialect and the location of the include files for the compiler. If more than one include
directory is required this can be added later using the “Configure” option on the PolySpace Panel.
Note: If the ‘visual’ OS-Target is detected and a PolySpace supported version of the Microsoft Visual C++ compiler
is installed the “Dialect” (-dialect) and “Include Directory” fields will be automatically completed. This also applies if
‘Li nux’ is detected as the -OS-Target, the dialect and include directory will be configured to process the header
files from the PolySpace Client/Server for C/C++ product directory.
Start Analysis Dialog:
» Selecting OK will result in the Start Analysis dialog being displayed.
» Select the class to analyze from the scope section. The results directory is automatically set
according to the name of the selected class, but can be overwritten once the class to analyze has been
selected.
» Select execute to start the analysis. When “Renpt e Mbde” is selected the analysis will be sent to
the PolySpace Server at the end of the compilation phase.

Release 2007a+ 178/377
Revision 4.2 vA

Start Analysis
Settings

Precision Level: | 2 vl To Paszs; | Software Safety Analysis level 2 j

Results Directory I Results_AirbagControl_C

Analysis Mode

Functions Called: Variables Written:
IV Class Analyzer I Unused j I Uninitialised j

Scope

Class to analyse: | AirbagControl € j IV Single Class Only

Analyze with (highlight dasses):

¥ Remote Mode (») Execute | 3 Cancel |

The “Settings” section allows setting of the analysis precision, the number of passes of the analysis to perform and
the results directory.
The “Analysis Mode” section allows configuration of the type of analysis to perform. The options are either to use
the “Class Analyzer” to analyze individual classes, or, without in which case a valid “main” function needs to be
present in the code. To analyze multiple classes at the same time deselect the “Single Class Only” option, and
highlight the classes to analyze in the list. The control and shift keys can be used to control the selection of classes
from the list.

“St op” Button
The client based phase (compilation) of the analysis can be stopped by clicking on the “St op” button. For analysis
running on the PolySpace Server use the “Queue Manager” to control the jobs.

“Conpi |l ati on Log” Button
The latest compilation log can be viewed at any time by clicking on the “Conpi | ati on Log” button.

“Confi gur e” Button
The configure button displays a cut-down version of the PolySpace Launcher. From this interface advanced
PolySpace options can be configured. Also when required extra source code compilation parameters can be
entered.
Click the disc button in the top left corner to save the configuration.

Release 2007a+ 179/377
Revision 4.2 vA

H PolySpace Server for CPP - Z:\addon_4_2\PolySpacelMLLink\example\air CPP_C i |EI|E|
| B -

Search internal hatme from the selected line I ,@ | [:3?
Mame Walle Internal natme

Analyvsiz options
f—]—GeneraI

—=ession identifier termplate cfg -prog

—Date 100572007 -clate

— & Lthiar i -author

—Froject version 1.0 _yerif-yerzion

—Examine effects of zcalar assignments -W0E

—Heep all intermediste files -keep-all-files

—icantinue wvith the current configuration -cortinue-with-existing-host

=

—izontinue even on an unsupported Linw distribution
F-Target/Compiler
u:umpliann:e wyith standards

-gllowy-unsupported-linu:

Dl':.-'Spal:E-' inner zeftings

recisiDnEcaling
urt'rtasking
Set parameter ...

Note: The PolySpace integration extracts the include directories and compilation flags from the current build
environment. In many cases no further configuration other than that requested by the “Bui | d Envi r onnent”
dialog should be required for a standard analysis.

“Manage Anal yses” Button
To download the results from a PolySpace Server or follow the progress of an analysis running on a Server click on
the “Analysis Manager” button.

“Vi ew Resul t s” Button
To view results the results from the last performed analysis click on the “View Results” button. If no results are
available (they are still on the server) the user will be prompted to start the PolySpace Queue Manager. From the
“Queue Manager” the results can be downloaded and opened.

“Browse for Results” Button
This option allows browsing and opening of all the PolySpace results for a model.

“Hel p” Button
The help button opens the PDF document containing this help.

Release 2007a+ 180/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.3. Installing the Integration into an existing model

This section details the configuration required to use PolySpace for UML link in a Rhapsody project.
The integration is written using the Visual Basic extension provided by Rhapsody. To install the
integration into new Rhapsody projects it uses the copyVBA feature contained in the Rhapsody i ni file

(Windows directory "c: \ r hapsody. i ni ").

However, for existing projects, the PolySpace Visual Basic module needs copying from
<Pol ySpaceCommmonl nst al | >\ Pol ySpaceUM_Li nk\ bi n\ pol yspace. vba to the project directory

and then renaming to <pr oj ect _nane>. vba, replacing the existing vba file.

For sites already using the Rhapsody visual basic feature, a merge of the PolySpace code and the
existing code can be performed. To perform the merge:

a) Export each form and module for the existing code using the Rhapsody Visual Basic
editor.

b) Close you model and copy the PolySpace.vba file into the model directory and
rename it to “<pr oj ect _nane>. vba”.

C) Re-open the model, start the Visual Basic Editor and import all of the module/form
code that was exported in the item ‘a) .

d) Optional: The master pol yspace. vba file can be updated if required with the

contents of “<pr oj ect _name>. vba” for use in new projects.

Release 2007a+ 181/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.4. Other Topics

Analysis Information
The first time an analysis is performed, a template PolySpace configuration file is copied from
<Pol ySpacel nst al | Cormon>/ Pol ySpaceFor UML/ et c/ t enpl at e_<Language>. cf g to the
project directory and is renamed <nodel > <| anguage>. cf g where <nodel > is the name of your
model and <l anguage> is the name of the language the model is targeted at e.g. C++ for this release.
The template cf g file can be updated either by editing it with the PolySpace Launcher by double
clicking the file in a Windows Explorer window or by manually copying a cf g file from a Rhapsody
model directory over the template file. In this way configuration can be shared amongst project
members and used with other projects.

Default template CFG Options
The following options are set by default in the t enpl at e_C++. cf g file:
- | ang=CPP
-prog=tenpl ate_cfg
-results-dir=r->results
-al | ow- undef - vari abl es=true
-respect-types-in-gl obal s=true
-respect-types-in-fields=true
-dos=true
-target =i 386
- D=[OM_NO_FRAMEWORK NMEMORY _MANAGER]
-to=7
- OS-t arget =no- pr edefi ned- OS
-voa=true

Back to Model Viewer link
The “BackToMbdel ” command in the Viewer (right click on a check) is currently limited to source code

lines containing a PolySpace check and also not containing a macro.
. Awarning “Unabl e to go back to the UML nodel fromthis | ocation”wilbe

given when trying to use the command on a line containing a macro.
. Awarning “No el enrent found i n nodel ” will be given for locations that Rhapsody does

not support the back to model feature, or for lines of code not in the model.

Release 2007a+ 182/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7. Working with results review

Related subjects:
7.1. Basics. prerequisite being ableto review PolySpace results

7.2. Methodology: selective orangereview
7.3. Category of checks
7.4. Advanced resultsreview

Release 2007a+ 183/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1. Basics: prerequisite being able to review PolySpace
results

Once PolySpace has completed an analysis and there are graphical results available, there will be
coloured entries shown in the source code. This section explains how to understand the implications of
the four colours:

* Red shows run-time errors which will occur every time that piece of code is executed;

. shows code which is unreachable (dead code);

. IS a warning;

. Green shows safe instructions: these are code sections which can never lead to a run-
time error.

This section explains the steps necessary to analyze a result of any colour. There are four core rules to
bear in mind throughout this section, viz.

* The next instruction is reached providing no run-time error was met at the previous
one.

* Each run-time error implies a “core dump” for PolySpace. The corresponding
execution is considered to have stopped, even if the run-time execution of the code might
not. SO — red checks will be followed by grey checks, and orange checks only propagate
the green parts through to subsequent checks.

* You should focus on the message given by PolySpace, and try not to jump to false
conclusions. You must explain the colour of a check step by step, until you find the root
cause.

* You should focus on an explanation by examining the code, and try not to be
influenced by knowledge of what the code actually does.

Related subjects:
7.1.1. Grey followsred

7.1.2. What isthe message and what doesit mean?

7.1.3. What isthe C++ explanation?

7.1.4. Review run-timeerrors. Fixred errors

7.1.5. Review dead code checks: why is grey code interesting?
7.1.6. How to conclude an orangereview

Release 2007a+ 184/377
Revision 4.2 vA

y R HNOLOGIES
Previous Back to table of contents Next

7.1.1. Grey follows red

For this step, you'll find why green is propagated out of . In the example below, consider the explanation of:

» the grey after the red in the red function;
* and the green colour of the array.

Explanation
voi d red(voi d) extern int read_an_input(void);
{ voi d propagat e(voi d)
i nt x; {
X = 1 X int X

int y[100];
X = 1; X = Read_An_i nput ();
} ylx] =0; 7/

y[x] = 0;

}

Let's detail each line of code for:

* The red function:
o When PolySpace divides by X, X has not been initialized. Therefore the corresponding
check (Non Initialized Variable) on X is red;
0 As aresult all possible execution paths are stopped, because they all produce an RTE.

* The propagate function:
o Xis assigned the value of Read_An_Input. After this assignment, X ~ [-2"31, 2"31-1].
o Atthe first array access, an “out of bounds” error is possible since X can be equal to (say) -
3 as well as 3;
o All conditions leading to an RTE are assumed to have been truncated — they are no longer

considered in the analysis. So on the following line, the executions for which X ~ [-2731, -1] and
[100, 2731-1] are stopped;

o Consequently at the next instructions X ~ [0, 99];

0 Hence at the second array access, the check is green because X ~ [0, 99].

Summary

Green is propagated out of . When doing manual stubbing and by using assert, you can use value
propagation to restrict input values for data. See Manual stubbing section

Release 2007a+ 185/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.1.2. What is the message and what does it mean?

PolySpace numbers the results in the same order than an execution would have performed the associated
operations.

Consider the instruction:
X++:

In each case, PolySpace first checks for a potential NIV (Non Initialized Variable) for x, then checks the potential
OVFL (overflow). An awareness of such sequences will help to understand the message which PolySpace is
presenting before going on to assess what that means for the code.

In the example below, the orange NIV on X in the test:
if (x > 100)

doesn't mean PolySpace doesn't know the value of X, which might be the conclusion of a hasty analysis.

So - what does it mean?
extern int read_an_i nput(void);

voi d mai n(voi d)
{
I nt X;
if (read_an_input()) x = 100;
if (X >101) //
{ yo1
}

Explanation

When you click on the check under the Viewer, you see the category of the check. Here, the category is NIV
(Non Initialized Variable). However, PolySpace may well analyze subsequent lines of code, and continue with an
understanding of the possible values as if initialization has taken place.

The correct analysis of this result might be that if X has been initialized, the only possible value for X is { 100 },
which is not greater than 101, so the rest of the code is grey. Hence we can conclude that PolySpace did know the
values - which is different from our first, hasty analysis.

Summary

e FALSE:if "(x > 100)" means: PolySpace doesn't know anything;
e TRUE:if "(x > 100)" means: PolySpace doesn't know if X has been initialized.

Release 2007a+ 186/377
Revision 4.2 vA

The first rules of reviewing results are:

» focus on the message given by PolySpace Verifier,
* do not focus on a quick interpretation.

Release 2007a+ 187/377
Revision 4.2 vA

TECHNOLOGIES

PonSpace

Previous Back to table of contents Next

7.1.3. What is the C++ explanation?

Results can only be explained based on the code and not on:

e aphysical action;
e aparticular configuration;
e or any reason other than the code itself.

Remember, all the tool is aware of is the C++ code itself!

Let's consider the example below, with regards to the explanation for the dead code (grey code)
following the "if" statement.

extern int read_an_i nput(void);

voi d mai n(voi d)
{
int X;
int y[100];
X = read_an_input ();
yix] =0; //
y[x-1] = (1 X) + X ;
if (x == 0)
yix] =1; 11

}

Once step 1 has been performed, the analysis is:

* the line containing the access to the Y array is unreachable;

* so the test to assess whether x is equal to O is always false;

* theinitial conclusion is that "the test is always false". Now, it would be easy
to jJump to the conclusion that this results from input data which is always different from
0. However, Read_An_Input can be any value in the full integer range, so this is not
the right explanation.

So, why is the test always false?
* The orange will truncate all executions paths that lead to a run-time error, so that
in our example, all instances where X is equal to 0 are stopped. From the division on,
~[1; 99];

 Thatis why X is never equal to O at this line — and hence, the array access is
green (Y(x- 1).

Note: for the array access at the previous line (y|x]), we have X ~ [-2"31, 2"31-1] - hence

the on (1/X) .

Release 2007a+ 188/377
Revision 4.2 vA

Summary

In this example, all results are located in the same procedure. But it is the same work to perform using
the call tree if a result comes from a procedure called by many others. Follow the "called by" call tree.
Focus on the explanation within the code only!

Release 2007a+

189/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.1.4. Review run-time errors: Fix red errors

All run-time Errors (RTE) highlighted by PolySpace are determined by reference to the language
standard, and are sometimes implementation dependant — that is, they may be acceptable for a
particular compiler but unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation of 127+1 cannot be 128,
but depending on the environment a “wrap around” might be performed with a resulting value of -128.

This result is of course mathematically incorrect. If the value represents the altitude of a plane, this
could result in a disaster.

By default, PolySpace doesn’t make assumptions about the way a variable is used. Any deviation from
the recommendations of the language standard is treated as a red error, and must therefore be
corrected.

PolySpace identifies two kinds of red checks

* Red errors which are compiler-dependant in a specific way. On some occasions
a PolySpace option may be used to allow particular compiler specific behaviour, and
on others the code must be corrected in order to comply. An example of a PolySpace
option to permit compiler specific behaviour would be the option to force dealing with
constant overflows, shift operation on negative values, etc.

 Allother red errors must be fixed. They are bugs.

Most of the bugs you'll find are easy to correct once they are identified. PolySpace identifies bugs
irrespective of their consequence, or of the ease with which they can be corrected.

Release 2007a+ 190/377
Revision 4.2 vA

y Eﬂ HHOLOGIES
Previous Back to table of contents Next

7.1.5. Review dead code checks: why is grey code interesting?
. Functional bugs can be found in grey code

PolySpace finds different types of dead code. Common examples include:

» Defensive code which is never reached

* Dead code due to a particular configuration

» Libraries which are not used to their full extent in a particular context
» Dead code resulting from bugs in the source code.

The causes of dead code listed in the examples below are taken from critical applications of embedded
software, analysed by PolySpace.

» Alack of parenthesis and operand priorities in the testing clause can change the
meaning significantly.
Consider this line of “pseudo” code:
IF NOT a AND b OR c AND d

Now consider how misplaced parentheses might influence how that line behaves:
| F NOT (a AND b OR ¢ AND d)

|F (NOT (a) AND b) OR (c AND d))
| F NOT (a AND (b OR c) AND d),
* The test of variable inside a branch where the conditions are never met;
* Anunreachable “else” clause where the wrong variable is tested in the “if” statement
* Avariable that is supposed to be local to the file but instead is local to the function
* Wrong variable prototyping leading to a comparison which is always false (say)

As is the case for red errors, the consequence of dead code and the effort needed to deal with it is
unpredictable. It can vary

* From one week effort of functional testing on target, trying to build a scenario going
into that branch, and wondering why the functional behaviour is altered, to
* A 3 minutes code review discovering the bug.

Again, as for red errors, PolySpace Verifier doesn’t measure the impact of

The tool provides a list of dead code. A short code review will enable you to place each entry from that
list into one of the five categories from the beginning of this chapter. Doing will identify known dead
code and uncover real bugs.

PolySpace experience is that at least 30% of reveals real bugs.
. Structural coverage

PolySpace always performs upper approximations of all possible executions. Therefore even if a line of
code is shown in green, there remains a possibility that it is a dead portion of code. Because

Release 2007a+ 191/377
Revision 4.2 vA

PolySpace made an upper approximation, it could not conclude that the code was dead, but it could
conclude that no run-time error could be found. PolySpace will find around 80% of dead code that the

developer would find by doing structural coverage.

PolySpace is intended to be used as a productivity help in dead code detection. It detects dead code
which might take days of effort to find by any other means.

Release 2007a+ 192/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.1.6. How to conclude an orange review

Related subjects:
7.1.6.1. What isan orange?

7.1.6.2. What are the different sour ces of oranges?
7.1.6.3. How to deter mine the cause of one orange?

Release 2007a+ 193/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.1.6.1. What is an orange?

If acheck isorange, it means that the approximate data set assumed by the analysis to represent a variable intersects with the error zone.

Hon empty intersection means Operation: 1 {x-7)

kg

Graphical representation of an check

Behind this picture, the orange colour can reveal any of the situations below.

Note that any an orange check can approximate a check of any other colour.

approximated by

Red approximated

by
ey
e
" Any other situation: Green approximated by
X real orange

If PolySpace attempted to manipulate every possible discrete value for al variables, the overheads for the analysis would be so large that
the problem would become incomputable. PolySpace manipulates polyhedrons representing data sets, and therefore cannot distinguish the
category of an orange. That task is left to you, and is detailed in the following chapters.

(As a conseguence, sometimes you may find an which represents something which seems an obvious bug, and at other
times you may find such a which is obviously safe. Asfar as the mechanism within PolySpace is concerned, it simply represents the
intersection of two data sets— which iswhy you are left to perform the results review to draw these distinctions.)

Release 2007a+ 194/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.1.6.2. What are the different sources of oranges?

There are anumber of possible causes of to be considered.
1. Potential bug: an can represent areal bug.

Example—Iloop with division by zero

2. Inconclusive check: an can represent a situation where PolySpace is unable to
conclude whether a problem exists. It is sometimes in the nature of software code that it cannot be
concluded whether there is a potential error. In the example below, the task T1 can be started before or
after T2, so PolySpace can’'t conclude without the calling sequence being defined.

 Consider avariable X initialized to 0, and two concurrent tasks T1 and T2.

e Supposethat T1 assignsavalue of 12 to variable X

* Now supposethat T2 divides alocal variable by X. The division is shown as an
because T1 can be started before or after T2 (so adivision by zero is possible).

3. Dataset issue: an resulting from atheoretical set of data. PolySpace considers all
combinations of input data rather than one particular combination (that is, it uses an upper approximation
of the data set). Therefore a check may be coloured asthe result of a combination of input values
which is analysed by PolySpace, but which will not be possible at execution time.

e Consider three variables X, Y and Z which can vary between 1 and 1000

* Now suppose that the code computes avalue of X*Y*Z on atype 16 bits. The result can
potentially overflow. It may be known when the code is devel oped that the variables can't all
take the value 1000 at the same time, but this information is not available to PolySpace. The
code will be coloured , accordingly.

4. Basic imprecision: an can be due to an imprecise approximation.

 Consider X, asigned integer between -2"31 and 2/31-1.

e Suppose afunction is called which performs the assignment x=1/x

* The parameters passed to the function imply that x must be equal to -5, -3, 8 or [10..20]. It
is clear from inspection that there is no problem here, but in this case PolySpace has made an
Imprecise approximation.

Release 2007a+ 195/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.1.6.3. How to determine the cause of one orange?

Consider each of the four categoriesin turn. Bugs may be revealed by any category of

other than the “Basic imprecision” category.
1. Potential bug: An can reveal code which will fail under some circumstances. The
following section describes how to find them.

2. Inconclusive analysis: Most inconclusive will take some time to investigate. An
inconclusive may well result from a very complex situation such that it may take an hour
or more to understand the cause. Y ou may decide to recode in order to be certain that there is no risk,
bearing in mind the criticality of the function and the required speed of execution.

3. Datasetissue. It isnormally possible to conclude that an isthe result of data set
problem in a couple of minutes. Y ou may wish to comment the code to flag this warning, or alternatively
modify the code in order to take constraints into account.

4. Basicimprecision: PolySpace cannot help to debug this code. Y ou may or may not have a problem
here, but you will need a supplementary activity to be sure. Most of the time, aquick code review isa
suitable path to take, perhaps using the Viewer’ s navigation facilities.

Release 2007a+ 196/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.2. Methodology: selective orange review

The purpose of this activity is to assess the probability of missing an orange containing a bug when
performing a “selective orange review”. This needs to be balanced with the cost of a bug left in the
code. Nevertheless, before reading this section, it is necessary to understand how the user might
conclude the status of an check. This is explained in a later section.

Suppose, for example, that the user wishes to spend the first hour of the day reviewing an analysis
which was performed overnight. This is an approach which can be adopted to enhance the quality of
code under development, perhaps supported by more extensive analysis as the project nears
completion.

Experience suggests that such approach can highlight 5 bugs in orange checks in a timescale: “finding
5 bugs in an hour”.

Related subjects:
7.2.1. Thebasic principles

7.2.2. Therationale behind the approach

7.2.3. In practice

7.2.4. Step by step

7.2.5. Considering the effects of application code size

Release 2007a+ 197/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.2.1. The basic principles

Focus on modules which have the highest selectivity in the application, where the selectivity is the
ratio of (green + + red) / (total number of checks).

The selectivity ratio can be found in the “pr ocedur al entiti es” view on PolySpace Viewer in the
percentage column. For example, review will be applied only on modules which have a selectivity ratio
greater than 85%, indeed by beginning the module which has the highest ratio. Then:

. Spend no more than 5 minutes per check.

. Review at least 50 checks an hour.

Release 2007a+ 198/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.2.2. The rationale behind the approach

If PolySpace finds only one or two in a module or function, there is a very good
possibility that they are not caused by “basic imprecision”. Consequently, the concentration of bugs in
here will be higher than in those found elsewhere in the code.

If you come across an which takes more than a few minutes to understand, it might well
be the result of inconclusive PolySpace analysis. To optimise the number of bugs found in a limited
time, you should move on to another check. A good rule of thumb is to spend no more than 5 minutes
on each check, remembering that the goal is to review at least 50 checks per hour to maximise the
number of bugs found.

Considering such an orange, you have to classify it in one of the four possible reasons explained in a
section above:

. Potential bug
If the data set analysed reveals real bugs, they should be corrected.
. Inconclusive check

The most interesting type of inconclusive check is identified when PolySpace states that the code is too
complicated. In such a case it is usually true that most orange checks in the problem file are related,
and that patient navigation will always draw the user back to a same cause — perhaps a function or a
variable modified many times. Experience suggests that such situations often focus on functions or
variables which have also caused trouble earlier in the development cycle.

Indeed, there is no scenario identified which leads to a real bug, but perhaps the development team
knows that there was trouble with this variable during development and the earlier testing phases.
PolySpace has also found this to be a problem, providing supporting evidence that the code is poorly
designed.

. Basic imprecision.

On some rare occasions, a module will contain a lot of similar occurrences of a “basic imprecision”.
This is most likely to be caused by a function close to the edge of an application, or in some stub
routines. In this case, PolySpace can only assist by means of the call tree and dictionary. This code
needs to be reviewed by an alternative activity — perhaps through additional unit tests or code review
with the developer. These checks are usually local to functions, so their impact on the project as a
whole is limited.

Release 2007a+ 199/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.2.3. In practice

For any particular function, PolySpace may be better at detecting some kinds of Run Time Errors than
others. For instance, the analysis of one function may yield imprecise results from the analysis of Non
Initialised Variables (NIV) but very precise results from the analysis of overflows (OVFL). In the
analysis of another function, the precise opposite may be true.

So, the “high selectivity focus” should be applied to each Run Time Error category separately.

Release 2007a+ 200/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.2.4. Step by step

1. Select one type of Run Time Error category, beginning from the left side (see figure below: “Tool bar for checks”)

Filtar
such as Out Of Bound Array Index (OBAI) as shown in the example. Click on A | and then click on the check type of

interest (OBAI in the example)

[| wru || scac || | ' ' f NIV | | FLor| | (| |
aeAl | zou [(N0 I BB 1) swr || weT (| e || cee || cor || pow | Fry || MEE L wee (| ooe || ewc || GRART) nsn‘r wre || wre || uwe || owE || won |

| 1 | | Il 11l Il 1 Il | 1 Il I Il I Il
Tool bar for checks
In figure above, all categories of checks are filtered except OBAI category.

2. Choose function member containing a high selectivity ration, i.e. few of the selected kind surrounded by a
lot of checks.

3. Proceed with a quick code review on each , spending no more than 5 minutes on each. The goal is to identify
the as a potential bug, inconclusive check or data set issue, navigating the code using the call tree and the
dictionary. If the check proves too complicated to explain, it may well be the result of a basic imprecision.

4. Once this job done, the user can select the “Ver i f i ed” checkbox in the PolySpace Viewer, and put an explanation of the
check in the comment field (for instance, “i nconcl usi ve”, or “dat a set issue”, “when calibration of <x> is
set greater than 100" ...

Select another type of category and repeat step 1-4. Note: It is important to review checks from left to right and finish with “C++”
checks (CPP, EXC and OOP).

Release 2007a+ 201/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.2.5. Considering the effects of application code size

PolySpace Verifier can make approximations when computing the possible values of the variables, at
any point in the program. Such an approximation will always use a superset of the actual possible
values.

For instance, in a relatively small application, PolySpace Verifier might retain very detailed information
about the data at a particular point in the code, so that for example the variable VAR can take the

values { -2; 1; 2; 10; 15; 16; 17; 25 }. If VARIs used to divide, the division is green (because 0 is not a
possible value).

If the program being analyzed is large, PolySpace Verifier would simplify the internal data
representation by using a less precise approximation, such as [-2; 2] U {10} U [15; 17] U {25} . Here,
the same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the analysis, PolySpace Verifier
might further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings when the size of the
program becomes large.

Note that the amount of simplification applied to the data representations also depends on the required
precision level (00, O2), PolySpace Verifier will adjust the level of simplification, viz.:

* -0O0 and —quick: shorter computation time. Focus only red and grey.
* -0O2: less orange warnings.

 -03: less orange warnings and bigger computation time.

Release 2007a+ 202/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3. Category of checks

This section presents all categories of checks that PolySpace analyses. Theses checks are classified into acronyms. Each acronym represents one or more
verification made by PolySpace. The list of acronyms, checks and associated coloured messages are listed in the following tables.

. Acronyms associated to C++ specific constructions:

Category Acronym Green Grey
function returns a value FRV function returns a value Unreachable check: function returns a value
Inon null this-pointer NNT this-pointer [of] is not null Unreachable check: this-pointer [of f] is not null
C++ related instructions CpPP array size is strictly positive Unreachable check: array size is strictly positive
CPP typeid argument is correct Unreachable check: typeid argument is correct
CPP dynamic_cast on pointer is correct Unreachable check: dynamic_cast on pointer is
correct
Unreachable check: dynamic_cast on reference is
CpPP dynamic_cast on reference is correct correct
INF Informative check: f is implicitly called Informative check: implicit call of f is unreachable
IDisplay of errors that relate to
Object Oriented Programming and OOP call of virtual function [f] is not pure Unreachable check: call of pure virtual function [f]
inheritance
OooP this-pointer type [of f] is correct Unreachable check: this-pointer type [of f] is correct
INF Informative check: f is called if this-pointer is of [Informative check: call of f depending on this type is
type T unreachable
OO0P pointer to member function points to a valid Unreachable check: pointer to member function
member function points to a valid member function
OOP Unreachable check: call to no function Information
INF Informative check: f is potentially called through [Informative check: potential call to f through pointer
pointer to member function to member function is unreachable
INF Informative check: f is called during construction [Informative check: call of f during construction of T is
Releaseboo7ar of T unreachable 06377

Revision 4.2 vA

INF Informative check: f is called during destruction [Informative check: call of f during destruction of T is
of T unreachable
IDisplay of errors that relate to EXC exception raised as specified in the throw list Unreachable check: exception raised as specified in
exception handling the throw list
EXC catch parameter construction does not throw Unreachable check: catch parameter construction
does not throw
Unreachable check: dynamic initialization does not
EXC dynamic initialization does not throw throw
Unreachable check: destructor or delete does not
EXC destructor or delete does not throw throw
EXC main, task or C library function does not throw |Unreachable check: main, task or C library function
does not throw
EXC logic_error is not thrown Unreachable check: logic_error is not thrown
EXC runtime_error is not thrown Unreachable check: runtime_error is not thrown
EXC call [to f] does not throw Unreachable check: call [to f] does not throw
EXC function does not throw Unreachable check: function does not throw
EXC expression value is not Unreachable check: expression value is not
EXCEPTION_CONTINUE_EXECUTION EXCEPTION_CONTINUE_EXECUTION
EXC Unreachable check: throw is not allowed with option -
no-exception
Category Acronym Red Orange
function returns a value FRV Error: function does not return a value \Warning: function may not return a value
[non null this-pointer NNT Error: this-pointer [of f] is null \Warning: this-pointer [of f] may be null
C++ related instructions CPP Error: array size is not strictly positive \Warning: array size may not be strictly positive
CPP Error: incorrect typeid argument \Warning: typeid argument may be incorrect
CPP Error: incorrect dynamic_cast on pointer \Warning: dynamic_cast on pointer may be incorrect
(analysis continues using a null pointer)
CPP Error: incorrect dynamic cast on reference \Warning: dynamic_cast on reference may be incorrect
INF
IDisplay of errors that relate to
Object Oriented Programming OOP Error: call of pure virtual function [f] \Warning: call of virtual function [f] may be pure
and inheritance
ooP Error: incorrect this-pointer type [of f] Warning: this-pointer type of [f] may be incorrect

Release 2007a+
Revision 4.2 vA

204/377

INF

exception

OO0P Error: pointer to member function is null or points [Warning: pointer to member function may be null or point
to an invalid member function to an invalid member function
OOoP Internal PolySpace error: please contact support
INF
INF
INF
IDisplay of errors that relate to EXC Error: exception raised is not specified in the \Warning: exception raised may not be specified in the
exception handling throw list throw list
EXC Error: throw during catch parameter construction [Warning: possible throw during catch parameter
construction
EXC Error: throw during dynamic initialization \Warning: possible throw during dynamic initialization
EXC Error: throw during destructor or delete \Warning: possible throw during destructor or delete
EXC Error: main, task or C library function throws \Warning: main, task or C library function may throw
EXC Error: logic_error is thrown (analysis jumps to \Warning: logic_error may be thrown
enclosing handler)
EXC Error: runtime_error is thrown (analysis jumps to [Warning: runtime_error may be thrown
enclosing handler)
Error: call [to f] throws (analysis jumps to
EXC enclosing handler) \Warning: call [to f] may throw
Error: function throws (analysis jumps to
EXC enclosing handler) \Warning: function may throw
Error: expression value is
EXC EXCEPTION_CONTINUE_EXECUTION Warning: expression value may be
(limitation) EXCEPTION_CONTINUE_EXECUTION (limitation)
EXC Error: throw is not allowed with option -no-

. Acronym not related to C++ constructions (also used for C code):

Category Acronym Green Grey
Out of bound array index OBAI Array index is within its bounds Unreachable check: out of bounds array index error
FZﬁm division ZDV Unreachable check:
clease RooFa- 24

Revision 4.2 vA

5/377

Release

Non-initialized variable NIV local/other [[local] variable is initialized Unreachable check:
scalar or float overflows OVEL/UNFL Unreachable check: variable overflow error
lllegal dereference pointer IDP Unreachable check: illegal dereference pointer error
Unreachable check: Function pointer must point to a
Correctness condition COR Function pointer must point to a valid function |valid function
COR
COR
COR
Power must be positive POW Power is positive Unreachable check: power positive error
Shift amount out of bounds SHF Scalar shift amount is within its bounds Unreachable check: shift error
SHF
Non initialized pointer NIP Unreachable check:
user assertion failures ASRT User assertion is verified Unreachable check: user assertion error
non termination of call NTC
non termination of loop NTL
Unreachable check UNR Unreachable code
\Value on assignment VOA {Range inf. <= [expr] <= range sup.}
Category Acronym Red Orange
Out of bound array index OBAI Out of bound array Array index may be outside its bounds

Zero division ZDV [scalar | float] division by zero occurs [scalar | float] division by zero may occur

Non-initialized variable NIV local/other [[local] variable is not initialized [local] variable may not initialized

scalar or float overflows OVFL/UNFL

lllegal dereference pointer IDP Pointer is outside its bounds Pointer may be outside its bounds

Correctness condition COR Function pointer must point to a valid function Function pointer may point to a valid function
COR wrong type for argument of call to function
COR wrong number of arguments for call to function
COR Array conversion must not extend range

Power must be positive POW Power is not positive Power may be not positive

Shift amount out of bounds SHFE Scalar shift amount is outside its bounds
SHF Left operand of left shit is negative

Non initialized pointer NIP

user assertion failures ASRT User assertion fails User assertion may fail

non termination of call NTC [f] call never terminates

pior-termination of loop NTL non termination of loop

206/377

Revision 4.2 VA

Cc
b
Py

Unreachable check
Value on assignment

<
>

Related subjects:
7.3.1. Function returnsavalue: FRV

7.3.2. Non null this-pointer: NNT

7.3.3. Positive array size: CPP

7.3.4. incorrect typeid argument:. CPP

7.3.5. incorrect dynamic cast on pointer: CPP
7.3.6. incorrect dynamic cast on reference: CPP
7.3.7. invalid pointer to member: OOP

7.3.8. Call of purevirtual function: OOP

7.3.9. incorrect typefor this-pointer: OOP
7.3.10. potential call to: INF

7.3.11. Non-Initialized Variable: NIV/NIVL
7.3.12. Non-I nitialized Pointer: NIP

7.3.13. User Assertion failure: ASRT

7.3.14. Overflows and underflows

7.3.15. Scalar or Float Divison by zero: ZDV
7.3.16. Shift amount is outsideits bounds. SHF
7.3.17. L eft operand of left shift isnegative: SHF
7.3.18. Power must be positive: POW

7.3.19. Array index isoutside its bounds: OBAI
7.3.20. Function pointer must point to a valid function: COR
7.3.21. Wrong number of arguments. COR
7.3.22. Wrong type of argument: COR

7.3.23. Pointer isoutsideits bounds: IDP
7.3.24.1ogic error isthrown: EXC

7.3.25. runtime error isthrown: EXC

7.3.26. Function throws. EXC

7.3.27. Call to throws. EXC

7.3.28. destructor or delete throws. EXC

Release 2007aF 207/377
Revision 4.2 vA

7.3.29. Main, tasks or C library function throws. EXC

7.3.30. exception raised is not specified in thethrow list: EXC
7.3.31. throw during catch parameter construction: EXC
7.3.32. Continue execution in except: EXC

7.3.33. Unreachable code: UNR

7.3.34. Values on assignment: VOA

7.3.35. Non Terminations: Callsand L oops

Release 2007a+

208/377
Revision 4.2 vA

Previous

PonSpace
TECHNOLOGIES
Back to table of contents

7.3.1. Function returns a value: FRV

Check to establish whether on every value-returning function there is no flowing off the end the function.
C++ Example:

1 static volatile int rand,

2

3 class function {

4 publi c:

5 function() { rep = 0; }

6 Int reply(int nmsg) { /'l FRV Verified: [function returns a val ue]
7 if (nmsg > 0) return rep

8 H

9

10 int reply2(int nsg) { /1 FRV ERROR: [function does not return a val ue]
11 if (nmsg > 0) return rep

12 1

13

14 reply3(int nsg) { /1 FRV Warning: [function may not return a val ue]
15 if (nmsg > 0) return rep

16 1

17

18 prot ect ed:

19 int rep ;

20 1

21

22 voi d mai n(voi d){

23

24 i nt ans;

25 function f;

26

27 if (rand)

28 ans = f.reply(1);

29

30 else if (rand)

31 ans = f.reply2(0); // NTC ERROR propagation of FRV ERROR
32 el se

33 f.reply3(rand);

34 }

Explanation:

Variables are often initialized using the return value of functions. However it may occur that, as in the above example, the
return value is not initialized for all input parameter values (which should always be the case). In this case, the target
variable will not be properly initialized with avalid return.

Release 2007a+
Revision 4.2 vA

209/377

Release 2007a+ 210/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.2. Non null this-pointer: NNT
This check verifies that the this pointer is null during call of a member function.

C++ Example:

1 #i ncl ude <new>

2 static volatile int randomint = O;

3

4 cl ass Company

5 {

6 publi c:

7 Conpany(i nt nunbd ients): nunberdients(nunbClients){};
8 vold newdients (int nunb) {

9 nunberClients = nunberdients + nunb;

10 }

11 pr ot ect ed:

12 int nunberdients;

13 H

14

15 voi d main (void)

16 {

17 Conmpany *Tech = 0;

18

19 if (random. nt)

20 Tech->newClients(2); // NNT ERROR [this-pointer of newClients is null]
21

22 Conpany *newTech = new Conpany(2);

23 newlech->newC ients(1); // NNT Verified: [this-pointer of newClients is not
nul 1]

24

25 }

26

Explanation:

Polyspace verifies that all functions, virtual or not virtual, by a direct calling, and through pointer calling are never called
with anull this-pointer.

In the above example, a pointer to a Company object is declared and initialized to null. When the newClients member
function of the Company classis called (line 20), PolySpace detects that the class object isanull pointer.

On the new alocation at line 22, as standard new operator returns an initialized pointer or raises an exception, the this-
pointer is considered as correctly allocated at line 23.

Release 2007a+ 211/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.3. Positive array size: CPP

This check verifies that the array size is always a non-negative value. In the following example, the array is defined with a
negative value by afunction call.

C++ Example:

1 static volatile int randomint = 1,

2 static volatile unsigned short int random user;

3

4 class Licence {

5 publi c:

6 Li cence(int nUser);

7 void initArray();

8 pr ot ect ed:

9 i nt nunber User;

10 int (*array)|[2];

11 }

12

13 Li cence::Licence(int nUser) : nunberUser(nUser) {
14 array = new int [nunmberUser][2]; // PAS ERROR [array size is not strictly
positive]

15 initArray();

16 }

17

18 voi d Licence::initArray() {

19 for (int i =0; I < numberUser; 1++) {

20 array[1]][2]=0;

21 }

22 b

23

24 voli d main (void)

25 {

26 if (randomint && random user !'= 0)

27 Li cence Firmnknown (-random user); // NTC ERROR propagation of PAS ERROR
28 }

Explanation:

The property, the non-negative value of an array size, is checked at line 14, where the array is defined with the
[numberUser][1] dimension. Unfortunately the numberUser variable is always negative as an opposite of an unsigned short
int type. PolySpace detects ared error and displays a message.

Release 2007a+ 212/377
Revision 4.2 vA

PonSp

ace

TECHNOLOGIES

Previous

Back to table of contents

7.3.4. incorrect typeid argument: CPP

Next

Check to establish whether atypeid argument is not anull pointer dereference. This check only occurs using typeid

function declared in stl library .

C++ Example:

1 #i ncl ude <typei nfo>

2

3 static volatile int random.i nt =1;
4

5 cl ass Form

6 {

7 public:

8 Form (){};

9 virtual void trace(){};
10 };

11

12 class Circle : public Form
13 {

14 public:

15 Crcle() Form () {};

16 void trace(){};

17 };

18

19

20 int main ()

21 {

22

23 Fornt pForm = 0 ;

24 Crcle *pCGrcle = new Grcle();
25

26 if (random.int)

27 return (typeid(Form == typeid(*p
typei d argunent]

28 if (random.int)

29 return (typeid(Form ==
argunent is correct]

30 }

31

32

33

34

Release 2007a+
Revision 4.2 vA

Form);

typeid(*pCircle));

/'l CPP ERROR

[/ CPP Verified:

[incorrect

[typeid

213/377

Explanation:

In this example, the pForm variable is a pointer to a Form object and initialized to anull pointer. Using the typeid
standard function, an exception israised. In fact here, the typeid parameter of an expression obtained by applying the
unary "*" operator isanull pointer leading to thisred error.

At line 29, *pCircleisnot null and typeid can be applied.

Release 2007a+ 214/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.5. incorrect dynamic_cast on pointer: CPP
Check to establish when only valid pointer casts are performed through dynamic_cast operator.

C++ Example:

1 #i ncl ude <new>

2 static volatile int random = 1;

3

4 cl ass nject {

5 prot ect ed:

6 static Object* obj;

7 publi c:

8 virtual ~Cbject() {}

9 b

10

11 class Item: Object {

12 privat e:

13 static Itenr item

14 publi c:

15 ltem();

16 b

17

18 bj ect* (bject::obj = new Object;
19

20 ltem:Item() {

21 if (obj '=0) {

22 item = dynam c_cast<ltenfr>(obj); // CPP ERROR [incorrect dynam c_cast on
poi nter (analysis continue using a null pointer)]
23 if (item==20) { // here anal ysed and reachabl e code
24 item= this;

25 }

26 }

27 }

28

29 voi d mai n()

30 {

31 Item *first= new Item);

32 }

Explanation:

Only the dynamic casting between a subclass and its upclass is authorized. So, the casting of Object object to altemobject is
an error on dynamic_cast at line 21, because Object is not a subclass of Item.

Behaviour follows ANSI C++ standard, in sense that even if dynamic_cast is forbidden, analysis continue using null pointer.
So at line 22, itemis considered as null and assigned to this at line 23.

Notethat thisisonly check where we can have another colour after ared. It isnot the case for adynamic _cast on a

Release 2007a+ 215/377
Revision 4.2 vA

reference.

Release 2007a+ 216/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.6. incorrect dynamic_cast on reference: CPP
Check to establish when only valid reference casts are performed through dynamic_cast operator.
C++ Example:

#i ncl ude <new>
static volatile int random = 1,
class nject {
pr ot ect ed:
static Object* obj;
publi c:
virtual ~Qoject() {}
b

©CoOoO~NOOOTA, WNPEF

10 class Item: public Object {
11 private:

12 static ltent item

13 public:

14 [tem& get _item();

15 [tem& other _item();

16 b

17

18 bj ect* (bject::obj = new Object;

19

20 [ten& Item:get itenm() {

21 I[tem& ref = dynam c_cast<ltem&>(*Ohject::o0bj); [/ CPP ERROR [incorrect
dynam c_cast on reference]

22 *Item = ref; /'l unreachabl e code

23 }

24

25 void main ()

26 {

27 I[tem* first= new lten();

28 if (random

29 first->get_item(); /1 NTC ERROR: propagation of
dynam c_cast reference error

30 bj ect & efo = dynam c_cast<bject&>(first->other_item)); // CPP Verified:
[dynam c_cast on reference is correct]

31 }

Explanation:

Only the dynamic casting between a subclass and its upclass is authorized. So, the casting of reference Object object to a
reference Item object is an error on dynamic_cast at line 20, because Object is not a subclass of Item.

The analysis stops at line 20 and the error is propagated to aNTC error at line 28. The behaviour is different with a
dynamic _cast on a pointer.

Release 2007a+ 217/377
Revision 4.2 vA

Release 2007a+ 218/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.7. invalid pointer to member: OOP
PolySpace checks that the pointer to afunction member isinvalid or null.

C++ Example:

1

2 static volatile int random = 1;

3

4 cl ass hject {

5 publi c:

6 oj ect (int nunero) : nunmeroQbj ect (nunero) {};
7 int returnNumero(){return numeroQbject;};

8 virtual void displayNunmero(Object* 0){ o->returnNunero();};
9 virtual void displayObject(){};

10 private:

11 i nt nunmeroQbj ect;

12 }

13

14 cl ass DerivedBase : public Object {

15 public:

16 DerivedBase(): Object(0){};

17 virtual void initDerivedVirtual ();

18 H

19

20 typedef void (DerivedBase:: *pDerived)();
21 typedef int (CObject::*pDi splayNunero) (Object*);

22

23 typedef void (Object::*pDisplayObj)();

24

25 voli d main (void)

26 {

27

28 bj ect* newhj ect = new Object(5H);

29 pDi spl ayNunero ptDisp = 0 ;

30

31 if (random

32 (newChj ect ->*ptDisp)(newthject); // OOP ERROR [pointer to nmember
function is null or points to an invalid nmenber function]

33

34 pDerived pDeriv = &DerivedBase: :initDerivedVirtual;

35 pDi spl ayObj pbv = static_cast <pDi splayQoj> (pDeriv);

36

37 if (random

38 (newObj ect->*pbv)(); // OOP ERROR [pointer to nmenber function is null or
points to an invalid nmenber function]

39 }

Release 2007a+ 219/377

Revision 4.2 vA

Explanation:

When afunction pointer operates on a null pointer to amember value, the behavior is undefined. In the above example, the
ptDisp pointer is declared and initialized to a null member function. When the function is called (at line 32) ared error is
raised.

In the second set of inctructions, DerivedBase inherit from Object class. A function that operates on a DerivedBase can
possibly access fields that a Object would not have, therefore it is not type-safe to call a pointer to member that is of a
DerivedBase if it has been obtained by up-cast. A down-cast should be performed first. PolySpace displays a red message
when the function obtained by up-cast is called (line 38).

Release 2007a+ 220/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.8. Call of pure virtual function: OOP
This check detects a pure virtua function call.

C++ Example:

1

2 cl ass Form

3 {

4 publi c:

5 Form(Fornt f){};

6 Form(Form¥ f, char* title){

7 f->draw); // OOP Warning: [call of pure virtual function draw)]
8 }s

9 virtual void draw() = 0;

10 3

11

12 cl ass Rectangle : public Form

13 {

14 publi c:

15 Rectangle(): Form (this, "Rectangle"){} ;
16 void draw);

17 3

18

19 voi d Rectangle::draw () {

20 Form:draw(); // Draw the rectangle
21 3

22

23 voli d main (void)

24 {

25 Rect angl e Rect 1;

26 Rect 1. draw();

27 }

Explanation:

The effect of making avirtual call to a pure virtual function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destructor) is undefined (see Standard ANSI 1SO/IEC 1998 pp. 199).

One Rectangle object is declared: Rectl calls the constructor (line 15), and so the Form constructor (line 6)
whose the draw() function member is called. Unfortunately, this function is a pure virtual function. PolySpace

Release 2007a+ 221/377
Revision 4.2 vA

points out awarning at line 7.

Release 2007a+ 222/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.9. incorrect type for this-pointer: OOP

Check to verify that a member function is associated to the right instance of a class.
Three principal causes lead to an incorrect this-pointer type:

. Anout of bounds pointer access
. A noninitialized variable member
« Aninadequat cast.

Following example shows the three possible cases.

C++ Example:

1 #i ncl ude <new>

2

3 extern int rand;

4

5 struct A {

6 virtual int f();

7 1

8

9 struct C {

10 virtual int h() { return 7; }
11 b

12

13 struct T {

14 int mj;

15 C mfield,

16 T() : mj(mfield.h()) {} // OOP ERROR (initialisation): [incorrect this-

poi nter type of T]
17 } badlnit;

18

19 cl ass Bad

20 {

21 publi c:

22 int i;

23 void f();

24 Bad() : i(0) {}

25 b

26

27

28 cl ass Good

29 {

30 publi c:

31 virtual void g() {}
32 void h() {}

33 static void k() {}
34 };

Release 2007a+ 223377

Revision 4.2 vA

35

36 I nt mai n()

37 {
38
39
40
41
42
43
44
45
46
47
type of
48
49
50
51
52
53
54 }
55

A* a = new A
Good *ptr = (Good *)(void *)(new Bad);

a->f(); [l OOP Verified: [this-pointer type of Ais correct]

if (rand) {
Ct ¢ = new G
++C;
c->h(); /1 OOP ERROR (out of bounds): [incorrect this-pointer
d

}

if (rand) ptr->g(); // OOP ERROR (cast): [incorrect this-pointer type of Bad]
if (rand) ptr->h(); // OOP ERROR (cast): [incorrect this-pointer type of Bad]

ptr->k(); // correct call to a static function

Explanation:

At line 16 of previous example, PolySpace points out here a this-pointer type problem (OOP category), because of an
initialisation missing for member field m_field. THis problem raises at definition of badinit variable at line 55.

At line 47 of previous example, PolySpace points out that even if the function member h is part of the ¢ Class, we are outside
the structure. It could be compared to IDP for simple class.

At last, lines 50 and 51 show anothers this-pointer problems:. function members g and h are not part of the Bad Class. Good
does not inherite from Bad. Note that there is no problem with static function member k because it is only syntaxic.

Release 2007a+
Revision 4.2 vA

224/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.10. potential call to: INF

[potential call to] are informative checks that help to understand reasonning of PolySpace during function calls, constructions
and destructions of objects through

C++ Example:

1 #i ncl ude <i ostreanp

2 static volatile int randomint = 1 ;

3

4 typedef enum{ ACP, UTC, CET } val ueKi nd;
5

6 cl ass SubVal {

7 val ueKi nd val

8 void init();

9 publi c:

10 SubVal (val ueKi nd v);

11 virtual ~SubVal () {}

12 virtual void |og(const char* nsgq);
13 val ueKind getVval () {return val;};

14 voi d undef ();

15 }

16

17 SubVal :: SubVal (val ueKind v) : val (v) {
18 init();

19 }

20

21 void SubVal::init() {

22 | og("SubVal creation"); /1 INF informative: [call of |og during
construction]

23 }

24

25 voi d SubVal ::log(const char* nmsg) {

26 cout << nsgQ;

27 }

28

29 voi d SubVal ::undef () {

30 l og("ArithVal destruction"); /1 INF informative: [call of |og during
destruction]

31 }

32

33 class ArithVal : SubVal {

34 publi c:

35 ArithVal (double d) : SubVal (GET) {}
36 ~ArithVal ();

37 voi d ArithAdd(double d) {};

38 virtual void log(const char* nsg) {
39 cout << getVal ();

40 H

Release 2007a+ 225377

Revision 4.2 vA

41 };

42

43 Arithval::~Arithval () {

44 undef () ;

45 }

46

47 voi d mai n(voi d){

48 ArithVal *xVal = new ArithVval (10.0);

49 xVal - >Ari t hAdd(1. 0); /1 INF informative: [call to X :function()]
50

51 SubVal *eVal = new SubVal (AOP);

52 eVal ->l og("new"); /'l INF informative: [potential call to X :function
()]

53

54 del ete xVal ;

55 del ete eVal;

56 }

Explanation:

In this example, a base and derived classes are described. From main program, we create objects, call member functions and
delete them. Associated to each function call, including constructors and destructors, some informative checks are put giving
(potential) call of functions, during construction and destruction of objects.

Theses checks can only be green or grey.

Release 2007a+ 226/377
Revision 4.2 vA

y pec HNOLOGIES
Previous Back to table of contents Next

7.3.11. Non-Initialized Variable: NIV/NIVL

Check to establish whether avariable local or not isinitialized before being read. We make a distinction between local
variables (including parameters of functions) and others. So PolySpace checks for same problems into two categories.

C++ example:

1 extern int random.int(void);

2 t ypedef doubl e tab[20];

3

4

5 cl ass operation

6 {

7 publi c:

8 int addl (int x, int y) { return y+=x; };
9

10 voi d initTab(){

11 for (int i =1; i < 20; i++) {
12 twentyFloat[i] = 0.0;

13 }

14 b

15

16 void addD(int x, int y){

17 twent yFl oat [x] = twentyFl oat| y] 5.0; // Unproven NI'V: index O is not
initialized.

18 }s

19

20 prot ect ed:

21 tab twentyFl oat;

22 ¥

23

24

25 voi d mai n(voi d)

26 {

27 operation cal cul ate;

28 int x, y = 0;

29

30 if (random.int()) {

31 cal cul ate. addl (x, vy); /1 NIV ERROR. Non Initialized
Vari abl e

32 }

33

34 calculate.initTab();

35 cal cul at e. addD(2, 4) ;

36

37 }

Release 2007a+ 2277377

Revision 4.2 vA

Explanation:

The result of the addition is unknown at line 28 because x is not initialized, (UNR unreachable code on "+" operator).

In addition, line 16 shows how Polyspace Verifier prompts the user to investigate further (by means of an orange check)
when all cells have not been initialized.

A local variableis notified with aNIVL acronym.

Note that the message associated with the check NIV or NIVL can give the type of the variable if it concerns a basic type:
"variable may be non initialized (type unsigned int32)". The modifier volatile can aso be notified: (type: volatile
unsigned int 8).

Release 2007a+ 228/377
Revision 4.2 vA

y E: HNOLOGIES
Previous Back to table of contents Next

7.3.12. Non-Initialized Pointer: NIP
Check to establish whether a pointer isinitialized before being dereferenced.

C++ example:

1 cl ass decl are

2 {

3 publi c:

4 decl are(int* p):pointer(p){};

5 i nt changeVal ue(int val){*pointer = 0;};
6 prot ect ed:

7 int* pointer;

8 ¥

9

10 vol d mai n(voi d)

11 {

12 int* p;

13 decl are newPoi nter (p); /1 NIP ERROR pointer not initialized
14 newPoi nt er. changeVal ue(0);

15 }

Explanation :

Aspisnotinitialized, theline 5 (*pointer = 0) would overwrite an unknown memory cell (corresponding to the
unreachable code on "*").

Release 2007a+ 229/377
Revision 4.2 vA

Previous

PonSp

ace

TECHHOLOGIES

Back to table of contents Next

7.3.13. User Assertion failure: ASRT

Check to establish whether a user assertion isvalid. If the assumption implied by an assertion isinvalid, then the standard
behavior of the assert macro is to abort the program. Verifier therefore considers afailed assertion to be a runtime error.

C++ Example:

1
2
3
4 {
5
6
7
8
9 }
10

#i ncl ude <assert. h>

t ypedef enum

nonday=1, tuesday,
wensday, thursday,
friday, sat ur day,
sunday

dayof week ;

11 /'l stubbed function
12 dayof week random day(voi d);

I
I

Il
Il

I
I

13 i nt random val ue(void);

14

15 voi d mai n(voi d)

16 {

17 unsigned int var _flip;

18 unsigned int flip_flop

19 dayof week cur Day;

20 unsigned int constant =1

21

22 if (randomvalue()) flip flop=1
lorO

23 var flip = (constant | randomval ue());
24

25 i f(randomval ue()) {

26 assert(flip_flop==0 || flip_flop==1); //
verified

27 assert(var _flip>0);

28 assert(var _flip==0);

29 }

30

31 if (randomvalue()) {

32 curbDay = random day();

33 (curbDay > thursday);
fail

34 assert(curbDay > thursday);
35 assert(curbDay <= thursday);
36 }

37 }

Release 2007a+
Revision 4.2 vA

else flip flop=0; // flip_flop randonmy be

/[l var_flipis always > 0O

ASRT Verified: user assertion is

ASRT Verified
ASRT ERROR: user assertion fails

Random day of the week
ASRT Warni ng: User assertion may

ASRT Verified
ASRT ERROR: user assertion fails

230/377

Explanation:
In the main, the assert function is used in two different way:

. To establish whether the values flip_flop and var_flip in the program are inside the domain which the program is
designed to handle. If the values were outside the range implied by the assert (see line 28), then the progam would
not be able to run properly. Thusthey are flagged as run-time errors.

. To redefine the range of variables as shown at line 34 where curDay is restricted to just afew days. Indeed,
Polyspace Verifier make the assumption that if the program is executed without run-time error at line 33, curDay can
only have avalue greather than thursday after thisline.

Release 2007a+ 231/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.3.14. Overflows and underflows

Related subjects:
7.3.14.1. Scalar and Float Overflows: OVFL

7.3.14.2. Scalar and Float Underflows: UNFL
7.3.14.3. Float underflow and overflow: UOVFL
7.3.14.4. Overflow on the biggest float

7.3.14.5. Constant over flow

7.3.14.6. Float underflow versusvaluesnear zero

Release 2007a+ 232/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.14.1. Scalar and Float Overflows: OVFL

Check to establish whether an arithmetic expression overflows. Thisisa scalar check with integer type and float check for
floating point expression.

C++ Example:

1 #i ncl ude <fl oat. h>

2

3 extern int random. nt(void);

4

5 cl ass Cal cul

6 {

7 publi c:

8 int makeOverflow(int i){

9 return 2 * (i - 1) + 2; /1 OVFL ERROR [scal ar variable overflows on
[+] ...]

10 [l 2"31 is an overflow value for int32

11 }

12 float overflow (float value){

13 return 2 * value + 1.0; /1 OVFL ERROR [float variable overflows on
[conversion from...]]

14 }

15 b

16

17

18 voi d mai n(voi d)

19 {

20 Cal cul c;

21 int i = 1;

22 float fvalue = FLT_MAX

23

24 I =1 << 30; Il i = 2**30

25

26 if (random.int())

27 i = c.nmakeOverflowi); /1 NTC ERROR: propagation of OVFL ERROR
28

29 if (randomint())

30 fvalue = c.overflow fval ue); /1 NTC ERROR: propagation of OVFL ERROR
31 }

Explanation:

On a 32-bits architecture platform, the maximum integer value is 2*31-1, thus 2*31 will raise an overflow. In the same
manner, if fvalue represents the biggest float its double cannot be represented with same type and raises an overflow.

Release 2007a+ 233/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.14.2. Scalar and Float Underflows: UNFL

Check to establish whether an arithmetic expression underflows. Thisis ascalar check with integer type and a float
check for floating point expressions.

C++ Example:

1 #i ncl ude <float. h>

2

3 extern int random.nt(void);

4

5 cl ass Cal cul

6 {

7 public:

8 I nt makeUnderflow(int i){

9 return i - 1; /1 UNFL ERROR scal ar variable is underfl ow
10 }

11 float underflow (float val ue){

12 return - 2 * val ue; /1 UNFL ERROR: float variable is underfl ow
13 }

14 ¥

15

16

17 vol d mai n(voi d)

18 {

19 Cal cul c;

20 int i = 1;

21 float fval = FLT_MAX;

22

23 I =-2* (i << 30); [l i =-2**31

24

25 if (random.int())

26 i = c.nmakeUnderflowi); /1 NTC ERROR: propagati on of UNFL ERROR
27

28 if (random.int())

29 fval = c.underflow(fval); // NTC ERROR propagation of UNFL ERROR
30 }

Explanation:

The minimum integer value on a 32 bit architecture platform is represented by -2** 31, thus adding (-1) will raise an
underflow.

Release 2007a+ 234/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.14.3. Float underflow and overflow: UOVFL

The check UOVFL only concerns float variables. PolySpace shows an UOVFL when both overflow and
underflow can occur on the same operation.
Example:

1 #include <nmath. h>

2 extern int prand (void);
3 #define FLT _MAX 3.40282347e+38F
4

5 int toto(void)

6 {

7 fl oat x;

8 if(())

9 {

10 = - FLT_MAX;

11 }

12 else if (()

13 {

14 = FLT_MAX;

15 }

16 el se

17 {

18 = 0;

19 }

20 = 2.0F * x; /1 UOVFL unproven: possible overflow and
under f | ow

21 return 1;

22 }

According to the branch in use, the results of the operation 2. OF * x could overflow or underflow.

Release 2007a+ 235/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.14.4. Overflow on the biggest float

There are occasions when it is important to understand when overflow may occur on
a float value approaching its maximum value. Consider the following example.

voi d mai n(voi d)

{
float x, v;
X = 3.40282347e+38f; /[l is green
y = (float) 3.40282347e+38; // OVFL red
}

There is a red error on the second assignment, but not the first. The real "biggest"
value for af | oat is: 340282346638528859811704183484516925440. 0 —
MAXFLOAT -.

Now, rounding is not the same when casting a constant to a float, or a constant to a
double:

» floats are rounded to the nearest lower value;

* doubles are rounded to the nearest higher value;

o 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440 (named
MAXFLOAT).

* In the case of the second assignment, the value is cast to a double
first - by your compiler, using a temporary variable D1 -, then into a float

— another temporary variable -, because of the cast. Float value is
greater than MAXFLOAT, so the check is red.

* Inthe case of the first assignment, 3.40282347e+38f is directly cast
into a float, which is less than MAXFLQOAT

The solution to this problem is to use the "f " suffix to specify the variable directly as a
float, rather than casting.

Release 2007a+ 236/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.14.5. Constant overflow
Consider the following example, which would cause an overflow.

int x = OXFFFF; /* OVFL */

The type given to a constant is the first type which can accommodate its value, from the appropriate
seguence shown below. (Please refer to “Target specification” section for information about the size of

a type depending on the target.)

Decimals int , long , unsigned | ong

Hexadecimals Int, unsigned int, |ong,
unsi gned | ong

Floats doubl e

For examples (assuming 16-bits target):

5.8 doubl e

6 I nt

65536 | ong

0x6 I nt

Ox FFFF unsi gned i nt
5. 8F fl oat
65536U unsi gned i nt

The options —ignore-constant-overflows allow the user to bypass this limitation and consider the line

int x = OXFFFF; /* OVFL */ as int x = -1;instead of 65535, which does not fit into a 16-
bit integer (from - 32768 to 32767).

Release 2007a+ 237/377
Revision 4.2 vA

PonSpace

TECHHOLOGIES
Previous Back to table of contents Next

7.3.14.6. Float underflow versus values near zero

The definition of the word "underflow" differs between the ANSI standard and the ANSI/IEEE 754-1985 standard. According to the former
definition, underflow occurs when a number is sufficiently negative for its type not to be capable of representing it. According to the latter,
underflow describes the erroneous representation of a value close to zero due to the limits of its representation.

PolySpace analyses apply the former definition.

(The latter definition does not impose the raising of an exception as a result of an underflow. By default, processors supporting this standard
permit the deactivation of such exceptions.)

Consider the following example.

2 #define FLT_MAX 3.40282347e+38F // maxi mum representable float found in <float.h>
3 #define FLT_MN 1.17549435e-38F // mininmum nornalised fl oat found in <float. h>
4

5 voi d mai n(voi d)

6 {

7 float zer float = FLT M N;

8 float min_float = -(FLT_MAX);

9

10 zer _float = zer_float * zer _float; // No check underflow near zero. VOA says {[expr] =
0. 0}

11 mn float = mn float * min_float; // UNFL ERROR underfl ow checked by verifier

12

13 }

Release 2007a+ 238/377

Revision 4.2 vA

Previous

PonSpace
TECHNOLOGIES
Back to table of contents Next

7.3.15. Scalar or Float Division by zero: ZDV

Check to establish whether the right operand of adivision (denominator) is different from O[.0].

C++ example:

1 extern int randomval ue(void);

2

3 cl ass Qperation {

4 publi c:

5 I nt zdvs(int p){

6 int j = 1;

7 return (1024 / (] -p)); /1 ZDV ERROR Scal ar Division by Zero
8 }

9 float zdvf(float p){

10 float | = 1.0;

11 return (1024.0 / (j-p)); // ZDV ERROR: float Division by Zero
12 }

13 3

14

15 I nt mai n(voi d)

16 {

17 Oper ati on op;

18

19 if (random val ue())

20 op. zdvs(1); /1 NTC ERROR: propagation of ZDV ERROR
21

22 if (random val ue())

23 op. zdvf (1.0); /1 NTC ERROR: propagation of ZDV ERROR

N
D
—

Release 2007a+
Revision 4.2 vA

239/377

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.16. Shift amount is outside its bounds: SHF

Check to establish that a shift (Ieft or right) is not bigger than the size of integral type (int and long int). The range of
allowed shift depends on the target processor: 16 bits on ¢c-167, 32 bits on 386 for int, etc.

C++ Example:

1 extern int random val ue(void);

2

3 class Shift {

4 publi c:

5 Shift(int val) : k(val){};

6 void opShift(int x, int |){

7 k = x << | /[l SHF ERROR: [scalar shift anpbunt is outside
its bounds 0..31]

8 }

9 voi d opShiftSup(int x, int |){

10 k = x > |; /1 SHF ERROR: [scal ar shift amount is outside
its bounds 0..31]

11 }

12 vol d opShi ftUnsigned(unsigned int x, int I){

13 unsigned int v = 1024;

14 vV = x >> |; /1 SHF ERROR: [scal ar shift amount is outside
its bounds 0..31]

15 }

16 prot ect ed:

17 int k;

18 ¥

19

20

21 voi d mai n(voi d)

22 {

23 int m | = 1024; /1 32 bits on i386

24 unsi gned u = 1024;

25

26 Shift s(1024);

27

28 if (randomyvalue()) s.opShift(l ,32); /1 NTC ERROR propagation of
SHF ERROR

29 if (randomvalue()) s.opShiftUnsigned(u ,32); // NIC ERROR propagation of
SHF ERROR

30 if (randomvalue()) s.opShiftSup(l ,32); /1 NTC ERROR: propagation of
SHF ERROR

31

32 }

Explanation:

Release 2007a+ 240377

Revision 4.2 vA

In this example, we just show that shift amount is greater than the integer size.

Release 2007a+ 241/377
Revision 4.2 vA

y E:HHDLCIGIEE
Previous Back to table of contents

7.3.17. Left operand of left shift is negative: SHF
Check to establish whether the operand of aleft shift is asigned number.

C++ example:

Next

1 extern int random val ue(void);

2

3 class Shift {

4 public:

5 shift(){};

6 Int operationShift(int x, int y){

7 return x << 1; // SHF ERROR |eft operand of left shift is negative
8 }

9 }s

10

11

12 voi d mai n(voi d)

13 {

14 Shift* s = new Shift();

15

16 if (random val ue())

17 s->operationShift(-200,1); // NIC ERROR propagation of SHF ERROR
18 }

Explanation:

As signed number representation is stored in the higher order bit, you can not left-shift a signed number without

loosing sign information.

As an aside, note that the -allow-negative-operand-in-shift option used at launching time instructs PolySpace to
allow explicitly signed numbers on shift operations. Using the option in the current example, the red check at line 8

istransformed in a green one.

Release 2007a+
Revision 4.2 vA

242/377

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.18. Power must be positive: POW

Check to establish whether the left operand of the pow mathematical function declared in is positive (directly or in
generated constructors or destructors)

C++ example:

1 #i ncl ude <mat h. h>

2

3 static volatile int randomint = 1;

4 static unsigned int rPositive;

5

6 cl ass Numeri c_power

7 {

8 public:

9 Nurmeri c_power (unsi gned i nt *baseV, int *exponentV);

10 ~Nureri c_power () {};

11 private:

12 doubl e power Val ue;

13 ¥

14

15 Numer i c_power:: Numeri c_power (unsi gned int *baseV, int *exponentV){

16 power Val ue = pow *baseV, *exponent V) ; /1 POW War ni ng: [power nmay be not
positive]

17 }

18

19 doubl e cal cul ate_power (int baseVal ue,int exponentVal ue) {

20 return pow baseVal ue, exponent Val ue); [// POWWarning: [power may be not
positive]

21 }

22

23 voi d main (void)

24 {

25 int x[3] = {3, 5 -1};

26 int negative = -(13%);

27 vol ati |l e unsigned int pr;

28

29 if (randomint) {

30 rPositive =

31 Nuneri c_power p(& Positive, X);

32 }

33

34 if (random.int) cal cul ate_power (negative, 4);

35 if (randomint) pow -7,4); // POWNWArning: [power may be not positive]
36

37 }

Release 2007a+ 243377

Revision 4.2 vA

Explanation:

The numeric_power constructor initialises its class member power_value with two arguments. At line 26, the first
argument, the left operand, is avolatile unsigned int, and even it is safe, awarning message is display by PolySpace.
The calculate_power function has a negative argument on the left but Polyspace points out awarning instead of areal
problem. Remeber that behind orange there is also run-time errors.

Release 2007a+ 244/377

Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.3.19. Array index is outside its bounds: OBAI

Check to establish whether an index is compatible with the length of the array being accessed.

C++ example:

1 #define TAILLE TAB 1024

2 typedef int tab[TAILLE TAB];

3

4 cl ass Array

5 {

6 publ i c:

7 Array(){};

8 void initArray();

9 private:

10 tab tabl e;

11 }s

12

13

14 vold Array::initArray()

15 {

16 I nt i ndex;

17

18 for (index = 0; index < TAILLE TAB ; i ndex++){
19 t abl e[i ndex] = 10;

20 }

21 table[index] = 1; [/ OBAl ERROR [out of bounds array i ndex]
22 }s

23

24

25 vol d mal n(voi d)

26 {

27 Array* test = new Array();

28 test->initArray(); /1 NTC ERROR: propagation of OBAI ERROR
29 }

Release 2007a+ 245/377
Revision 4.2 vA

Explanation:

Just after the loop, index equals SZE_TAB. Thustab[index] = 1 overwrites the memory cell
just after the last array element.

Note that the message associated with the check OBAI gives always the range of the array: out of
bounds array index [0..1023]

246/377

Release 2007a+
Revision 4.2 vA

y EC HMOLOGIES
Previous Back to table of contents Next

7.3.20. Function pointer must point to a valid function: COR
Check to establish whether a function pointer pointsto avalid function, or to function with avalid prototype.

C++ example:

1 t ypedef void (*Call Back) (void *data);

2

3 struct {

4 int ID

5 char nane[20] ;

6 Cal | Back func;

7 } funcsS;

8

9 float fval;

10

11 voi d mal n(voi d)

12 {

13 Cal | Back cb =(Cal | Back) ((char*) & uncS + 24 * sizeof(char));
14

15 cb(&val); // COR ERROR function pointer nust point to a valid function
16 }

Explanation:

In the example, func has a prototype in conformance with CallBack's declaration. Therefore func isinitialized to point
to the NULL function through the global declaration of funcS.

Release 2007a+ 247/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.21. Wrong number of arguments: COR

Check to establish whether the number of arguments passed to a function matches the number of argument in its prototype.

C++ example:

1 extern int randomval ue(void);

2

3 typedef int (*t_func_2)(int);

4 typedef int (*t_func_2b)(int,int);
5

6 int foo_nb(int x)

7 {

8 if (x% == 0)

9 return O,

10 el se

11 return 1,

12 }

13

14 voi d mai n(voi d)

15 {

16 t _func_2b ptr_func;

17 int i = 0;

18

19 ptr_func = (t_func_2b)foo_nb;
20 i f (randomval ue())

21 i = ptr_func(1,2); // COR ERROR [function pointer nust point on a valid
function]

22 /1 COR Warning: [wong nunber of argunents for call to function foo _nb(int):
got 2 instead of 1]

23 }

Explanation:

In thisexample, ptr_func is a pointer to afunction that takes two arguments but it has been initialized to point to afunction
that only takes one.

In this case thisis the associated COR warning which explains the COR ERROR: [wrong number of arguments for call to
function : got instead of], where is the number of argument used and the number of argument waited.

Release 2007a+ 248/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.22. Wrong type of argument: COR

Check to establish whether each argument passed to a function matches the prototype of that function.

C++ example:

1 static volatile int random = 1;

2

3 int f(float f) { return 0O; }

4 int g(int i) { returni; }

5

6 typedef int (*func_int)(int);

7

8 func_int ftab = (func_int)f;

9

10 voi d badTab(int i) {

11 ftab(++i) ; /1 COR ERROR: [function pointer must point on a valid function]
12 /1 COR Warning: [wong type for argunent #1 of call to function f(float)]
13 }

14

15 int main()

16 {

17 int idx = 0;

18

19 for (int i =9; I <10; ++ i) {

20 if (random

21 badTab(++i dx); // NTC ERROR propagati on of COR ERROR
22 }

23 }

Explanation:

In this example, tab is an function pointer to functions which expects a float as input argument. However, the parameter used
isan int. So PolySpace Viewer prompts the user to check the validity oh the code.

In this case, thisis the associated COR warning which explains the COR ERROR: [wrong type for argument # of call to
function], where gives the location of the wrong argument in the function.

Release 2007a+ 249/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.23. Pointer is outside its bounds: IDP

Check to establish whether the dereferenced pointer is still inbound of the pointed object.

C++ example:

1 #defi ne TAILLE TAB 1024

2

3 typedef int tab[TAI LLE TAB];

4

5 class Array {

6 public:

7 Array(tab a){

8 p = a;

9 initArray();

10 }

11 void initArray(){

12 i nt i ndex;

13 for (index = 0; index < TAILLE TAB ; index++, p++) {
14 *n = 0;

15 }

16 }

17 voi d changeNext El enent Wt hVal ue(int i){
18 *P =i /1 1DP ERROR pointer is outside its bound
19 }

20

21 private:

22 int *p;

23 b

24

25

26 vol d mai n(voi d)

27 {

28 tab t;

29

30 Array a(t);

31 a. changeNext El ement Wt hVal ue(1); // NIC ERROR: propagation of |DP ERROR
32 }

Related subjects:

7.3.23.1. Under standing addressing

7.3.23.2. Under standing pointers

Release 2007a+ 250/377
Revision 4.2 vA

Explanation:

The pointer pisinitialized to point to the first element of tabat line 4. When the loop exits, ppoints one past the last
element of the array. Thus line 16 overwrites this cell.

Release 2007a+ 251/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.23.1. Understanding addressing

Related subjects:
7.3.23.1.1. hardwareregisters

7.3.23.1.2. NULL pointer
7.3.23.1.3. Comparing address

Release 2007a+ 252/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.23.1.1. hardwareregisters
Many code analyses exhibit out of bound checks with respect to accesses to absolute addresses and/or hardware registers.
(Also refer to the discussion on Absolute Addressing)

Here is an example of what such code might look like:

#define X (* ((int *)0x20000))
X = 100;
y = 1 ;11 ZDV check is because X ~ [-2731, 2731-1] permanently.
/'l The pointer out of bounds check is because 0x20000
/1 may address anything of any |ength
/'l NIV check is on X as a consequence
Ni=F i roid mai n (voi d)
Expanded source code 2 int y;
| & w o= L o 1F fEint *)Ex208003F 7
3
¢
=iy Ly
Expanded source code
| 7 B hint SR 0uenN = 100;
int *p = (int *)0x20000;
*p = 100;
y = 1 i Il ZDV check is because *p ~ [-2731, 2731-1] pernanently
/'l The pointer out of bounds is because 0x20000
/1 may address anything of any |ength
/1 NIV check on *p is as a consequence
This can be addressed by defining registers as regular variables:
Replace By
Hdefine X Int X
int *p; int _p;
Hdefine p (& p)
Note Check that the chosen variable name (p in this
example) doesn’t already exist
int *p; vol atile 1nt _p;
int *p = & p;

The volatile section discusses an approach which will help avoid the orange check on the pointer dereference, but retains the
representation of a “full range” variable.

Release 2007a+ 253/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.23.1.2. NULL pointer

Consider the NULL address, viz.

#defi ne NULL O

-It is illegal to dereference this 0 value
-0 is not treated as an absolute address.

*NULL = 100; // produces a red - |llegal Dereference Pointer (1DP)

* Assuming these declarations:-
int *p = 0x5;
volatile int vy;

. and these definitions:-

#define NULL O
#defi ne RAM MAX ((int *)Oxffffffff)

» consider the code snippets below.

While (p !'= (void *)0x1)
p--; [/ term nates

0x1 is an absolute address, it can be reached and the loop terminates
for (p = NULL; p <= RAM MAX; p++)
d

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a NULL pointer is forbidden.
Whi le (p !'= NULL)

*p =0; // illegal dereference of pointer

=0; /1 dereference of a pointer

'When p reaches the address 0x0, there is an attempt to considered it as an absolute address

In effect, it is an attempt to dereference a NULL pointer — which is forbidden.

[Note that in this case, the is because the execution of the code here is ok () until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

. Thanks to the default behaviour of PolySpace, it is easy to automatically stub a function whose purpose is
to copy data from/to RAM or to compute a checksum on RAM.

. If a function is supposed to copy calibration data, it should also be stubbed automatically.

. If the purpose of a function is to map EEPROM data to global variables, then a manually written stub is
essential to ensure the assignment of the correct initialisation values to them.

Release 2007a+ 254/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.3.23.1.3. Comparing address

PolySpace only deals with the information referred to by a pointer, and not the physical location of a
variable. Consequently it does not compare addresses of variables, and makes no assumption
regarding where they are located in memory.

Consider the following two examples of PolySpace behaviour:
int a,b;

if (& > &) // condition can be true and/or false
{ } /1 both branches are reachabl e

el se

{ } /1 both branches are reachabl e

and

int X, z;

voi d mai n(voi d)

{ int i;
X = 12;
for (i=1;, i<= Oxffffffff; i++)
{

“((int *)i) = 0;
}
z =1/ x; Il ZDV green check because Pol ySpace doesn't consider any

/1l relationship between x and its address

“X” is aliased by no other variable. No pointer points to “x” in this example, so as far as the PolySpace
analysis is concerned, “x” remains constantly equal to 12

Release 2007a+ 255/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.23.2. Understanding pointers
PolySpace doesn't analyse anything which would require the physical address of a variable to be taken into
account.

* Consider two variables x and y. PolySpace analysis will not make a meaningful comparison of
“&x” (address of x) and “&y”
* So, the Boolean (&x < &y) can be true or false as far as PolySpace analysis is concerned.

However, PolySpace analysis does keep track of the pointers that point to a particular variable.

* So, if ptr points to X, *ptr and X will be synonyms.

Related subjects:
7.3.23.2.1. How does malloc work for PolySpace?

7.3.23.2.2. Structure Handling

Release 2007a+ 256/377
Revision 4.2 vA

PonSpace

Previous

TECHNOLOGIES

Back to table of contents

7.3.23.2.1. How does malloc work for PolySpace?

PolySpace analysis accurately models malloc, such that both the possible return values of a null pointer and the
requested amount of memory are taken into account.

Consider the following example.
voi d mai n(voi d)

{
char *p;
char *q;
p = malloc(120);
q = p;
g="'a; [/ results in an
}

This code will avoid the orange dereference:

voi d mai n(voi d)

{

char *p;

char *q;

p = malloc(120);

q = p;

if (p!'= NULL)

*g="a,; [/l results in a green dereference check

}

Release 2007a+
Revision 4.2 vA

der ef erence

257/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.23.2.2. Structure Handling

Related subjects:
7.3.23.2.2.1. Array conversions. COR

7.3.23.2.2.2. Mapping of a small structureinto a bigger one

Release 2007a+ 258/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.23.2.2.1. Array conversions: COR
Check to establish whether asmall array is mapped onto a bigger one through pointer cast.

C++ Example:

1 typedef int Big[100];

2 typedef int Small[10];

3 t ypedef short Equi vBi g[200];

4

5 Smal | smal |l tab

6 Bi g bi gt ab;

7

8 extern int randomyval ();

9

10 voi d mai n(voi d)

11 {

12

13 Big * ptr_big = &bigtab

14 Small * ptr_small = &smal It ab;

15

16 I f (randomuval ()){

17 Big *new ptr_big = (Big*)ptr_snall; /1 COR ERROR array conversion
must not extend range

18 }

19

20 i f (randomval ()){

21 Equi vBi g *ptr_equivbig = (Equi vBi g*)ptr big;
22 Smal | *ptr_new small = (Small*)ptr big; // COR Verified
23 }

24 }

Explanation:

In the example above, a pointer isinitialized to the Big array with the address of athe Small array. Thisis not legal since
it would be possible to dereference this pointer outside of the Small array. Line 22 shows that the mapping of arrays
with same length and different prototypes is authorised.

Release 2007a+ 259/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.3.23.2.2.2. Mapping of a small structureinto a bigger one
For example, if p is a pointer to an object of type t _struct and it is initialized to point to an object of
typet struct _bi s whose size is less than the size of t _struct, itis illegal to dereference p

because it would be possible to access memory outside of t _st ruct _bi s. PolySpace prompts user
to investigate further by means of an orange check. See the following example.

1 #i ncl ude <mal |l oc. h>

2

3 t ypedef struct {

4 int a;

5 uni on {

6 char c;

7 float f;

8 } b;

9 } t_struct;

10

11 voi d mai n(voi d)

12 {

13 t _struct *p;

14

15 /1l optimze nenory usage

16 p = (t_struct *)mall oc(sizeof (int)+sizeof(char));
17

18 p->a = 1; [/ 1DP Warning: pointer may be outside its bounds
19

20 }

Release 2007a+ 260/377
Revision 4.2 vA

PonSpace

Previous

Back to table of contents

TECHNOLOGIES
Next

7.3.24. logic_error is thrown: EXC
This check determines whether alogic_error is raised.

C++ Example:

1 #i ncl ude <st dexcept >

2 #i ncl ude <vector>

3 #i ncl ude <stdio. h>

4

5 usi ng nanespace std;

6

7 i nt maxSi zeTabl e = 10;

8

9 class ConputerFirm: private out_of
10 {

11 public:

12 Conmput er Fi r(i nt nunber): out _of

[logic_error is not thrown]

_range

_range ("error") { // EXC Verified:

13 nunber C = nunber;

14 1

15 i nt whichQuantity(int i) throw (logic_error);
16 void InitConmputerFirm() throw (out_of range);
17

18 pr ot ect ed:

19 unsi gned int nunberC

20 vector<int> tabl e;

21 b

22

23 voi d ConputerFirm:|InitConmputerFirn() throw (out_of _range) // EXC Warning:
[logic_error may be thrown]

24 {

25 tabl e. resi ze(nunber Q)

26 for (int i =0; | < table.size(); I++) {

27 try {

28 if (1 >= nmaxSi zeTabl e)

29 throw out _of range("out_of range");

30 tableli] =1

31 }

32 catch (...){

33 t hr ow,

34 b

35 1

36 ¥

37

38 int ConputerFirm:whichQuantity(int i) throw (logic_error) // EXC ERROR

Release 2007a+
Revision 4.2 vA

261/377

[logic_error is thrown (analysis junps to enclosing handl er)]

39 {

40 I f (i > maxSi zeTabl e)

41 throw logic_error ("logic_error");

42 return table[i];

43 }

44

45 void main (void)

46 {

47 try {

48 Conmput er Fi rnt pR chardFirm = new ConputerFirn(10);
49 pRi chardFirm >l nitConputerFirm);

50 int g = pR chardFi rm>whi chQuantity(12); // EXC ERROR [call to
whi chQuantity thrown (analysis junps to enclosing handler)]
51 }

52 (const exception& e) {

53 int ret = printf("error™); // display error nmessage
54 }

55 }

Explanation:

Here, apointer of class ComputerFirm named pRichardFirmis created, with three functions members and a vector of
integers with amaximum size of 10 elements. The classlogic_error defines the type of objects thrown as exceptions to
report errors presumably detectable before the program executes, such as violation of logical preconditions.

At line 49, InitComputerFirmis called. Thisfunction initializes all elementsto 1. In this function (line 28), the size of
the created vector is checked against the maximum authorized size. In this case, the vector's size and the maximum size
are both equal to 10, so no logic_error is raised but du to imprecision PolySpace does not exactly know if it isthe case
or not leading to a warning message.

At line 50, a second function member is called, whichQuantity which returns the value of the element in parameter. For
this call the valueis 12, greater than the maximum size, therefore alogic error is detected. A red message is displayed
on the function definition on word throw(see line 36).

Note: this check is positionned only when class logic error isfound in the source code. A code which does not include
stdexcept header will not get this useless information.

Release 2007a+ 262/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
7.3.25. runtime_error is thrown: EXC

Check to establish that aruntime_error exception is raised.

C++ Example:

1 #i ncl ude <stdexcept>

2 #i ncl ude <mat h. h>

3 #i ncl ude <fl oat. h>

4 #include <limts. h>

5 usi ng nanespace std;

6

7 static volatile int randomint = 1;

8 doubl e maxFl oat = FLT_MAX

9 short int slnt = SHRT_MAX;

10

11

12 class RUE : runtinme_error

13 {

14 publi c:

15 RUE() : runtime_error("rien"){}

16 RUE(doubl e nunber ToAdd) : runtine_error("overflow'){ /1 EXC Verified:

[runtime_error is not thrown]

17 result pow mexFl oat, maxFl oat) ;

18 b

19 pr ot ect ed:

20 float result;

21 b

22

23

24 | ong addDoubl e(fl oat firstOperand, int secondOperand) throw (int,runtinme_error)

{ I/ EXC ERROR [runfunction throws (analysis junps to enclosing handl er)]
25

26 throw runtime_error("overflow');

27 el se

28 return firstQOperand + secondQper and;

29 }

30

31 int f(){ // EXC unreachable: [function does not throw
32 RUE r:

33 throw r;

34 }s

35

36 voi d mai n(voi d)

37 {

38 try {

39 RUE t est Addi ti on(maxFl oat);

40 addDoubl e(maxFl oat,slnt); // EXC ERROR [call to addDouble() throws

(anal ysis junps to encl osing handl er)]

Release 2007a+
Revision 4.2 vA

263/377

41 f();

42 }

43 (runtime_error) {

44 cout << "Error : overflow';
45 }

46 }

Explanation:

The class runtime_error defines the type of objects thrown as exceptions to report errors presumably detectable only when the
program executes.

In this example, we create an object RUE with the maximum size of afloat as parameter (line 39). Its constructor can catch
runtime_error. A green message acknowledges that no runtime_error has been thrown.

We define the function addDouble (line 24) which can catch int exception and runtime_error exception. Its definition shows
that if the addition of the two parametersis greater than the maximum size of along integer, aruntime_error is thrown.
Indeed, in the following execution addDouble receives as parameter the maximum size of a short integer and float. So, a
runtime_error exception is thrown (see line 26). PolySpace propagates to the definition of the function with aruntime_error
red error.

Asthelogic_error, PolySpace checks functions using stdexcept library.

Release 2007a+ 264/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.26. Function throws: EXC
Check to verify that afunction never raises an exception for every returned values.

C++ Example:

1 #i ncl ude <vector>

2

3 static volatile int randomint = 1;

4 class error{};

5

6 class I nitVector

7 {

8 public:

9 (int size) {

10 si zeVector = size;

11 tabl e. resi ze(si zeVector);

12 Initialisation();

13 H

14 void Initialisation ();

15 void reSi ze(int size);

16 i nt getValue(int nunber) throw (error);
17 int returnSize();

18 privat e:

19 int sizeVector;

20 vect or<i nt > tabl e;

21 b

22

23 InitVector::Initialisation() { // EXC Warning: [functions nay throw]
24 int i;

25 for (i =0; | < table.size(); i++){

26 table[i] = 0;

27 }

28 if (random.int) I ;

29 }

30

31 void InitVector::reSize(int sizeT) {

32 tabl e. resi ze(si zeT);

33 si zeVector = table.size();

34 }

35

36 int InitVector::getValue(int nunber) throw (error) { // EXC ERROR [function
throws (analysis junps to enclosing handler)]
37 if (nunmber >= 0 && nunber < sizeVector)
38 return tabl e[nunber];

39 el se throw error();

40 }

41

Relcase 2007a+ 265/377

Revision 4.2 vA

42 int InitVector::returnSize() { // EXC Verified: [function does not throw

43 return table. size();

44 }

45

46 (voi d)

47 {

48 InitVector *vectorTest = I nitVector(5);
49

50 if (random. nt)

51 vect or Test ->returnSi ze();

52

53 if (random. nt)

54 vect or Test ->get Val ue(5); // EXC ERROR: [call to getValue throws (analysis
junps to enclosing handler)]

55 }

Explanation:

The class InitVector allows to create a new vector with a defined size. The resize member function allows to change the size,
without any size limit. returnSze returns the vector's size, and no exception can be thrown. A green check is displayed for
this function: [function does not throw].

The getValue function returns the array's value for a given index. If the parameter is outside vector bounds, an exception is
raised. For avector'size of 5 elements, valid index are [0..4]. At line 53, the programmers tries to access the fifth element
table[5]. An exception is raised and Polyspace displays a red message.

Polyspace Verfier tests functions that raises exception or no, with void or no-void type:

. aways: function throws (analysis jumps to enclosing handler)
. hever: function does not throw
. sometimes: function may throw

When this check happens, a propagation to caller is made with another exception check [call to throws] (see line 53).

Release 2007a+ 266/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.27. Call to throws: EXC
Check to verify that afunction call raises or not an exception.

C++ Example:

1 static volatile int randomint =1 ;

2

3 class error{};

4

5 class A

6 {

7 publi c:

8 A() {val ue=9;};

9 int badReturn() throw (int);

10 i nt goodReturn() throw (error);

11 pr ot ect ed:

12 i nt val ue;

13 b

14

15 int Ar:badReturn() throw (int) { // EXC ERROR [function throws (analysis
junps to encl osing handl er)]

16 i f(!value)

17 return val ue;

18 el se

19 2;

20 b

21

22 int A :goodReturn() throw (error) { // EXC Verified: [function does not throws]
23 int p=17;

24 if (p>0)

25 return val ue;

26 el se

27 throw error();

28 b

29

30 (voi d)

31 {

32 A* a = new A();

33 i f(random.int)

34 a->badReturn(); // EXC ERROR [call to badRetrun throws (analysis junps to
encl osi ng handl er)]

35 i f(random.int)

36 a->goodReturn(); // EXC Verified: [call to goodRetrun does not throw
37 }

Explanation:

Release 2007a+ 267377

Revision 4.2 vA

Inthefirst call, Polyspace propages to caller that the function always raises an exception because member variable value is

always different from O.
In the second call, PolySpace checks that no throw has been made in the function because the conditional test at line 24 is

alwaystrue.
Most of the time, the [call to throws] is associated to [function throws] check.

Release 2007a+ 268/377

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.28. destructor or delete throws: EXC
Check to establish whenever an exception is throw and not catch in a destructor or during a delete.

C++ Example:

1 #i ncl ude <math. h>

2 usi ng nanespace std;

3 vol atil e unsigned int randomint =1 ;
4

5 class error{};

6

7 cl ass Rectangl e

8 {

9 publi c:

10 Rectangle(){};

11 Rect angl e (unsigned int |ongueur, unsigned int |arge):|ongueurRect (| ongueur),
| argeRect (| arge){};

12

13 ~Rect angl e() /1 EXC Warning: [possible throw during destructor
or del ete]

14 if (!'random.int)

15 throw error();

16 }s

17

18 virtual double cal cul Area() {

19 return | ongueur Rect * | argeRect;
20 3

21

22 pr ot ect ed:

23 unsi gned int | ongueurRect;

24 unsi gned int |argeRect;

25 }

26

27 cl ass Cube : public Rectangle

28 {

29 publi c:

30 Cube():cote(3){};

31 ~Cube() { /1 EXC ERROR: [throw during destructor or delete]
32 i f(random i nt >=0)

33 throw error();

34 ;

35 doubl e cal cul Area() {

36 return pow cote, cote);

37 }s

38 pr ot ect ed:

39 int cote ;

40 b

41

Release 2007a+ 269/377

Revision 4.2 vA

42 voi d main (void)

43 {

44 try {

45 Rect angl e* fornml = new Rectangl e(10, 2);

46 doubl e k = fornil->cal cul Area();

47

48 Cube* forn2 = new Cube;

49 double | = forn2->cal cul Area();

50

51 del ete forml;

52 del ete forng; /'l NTC ERROR: propagation of throw during destructor
53 }

54 catch (error){

55 //raised when an error occurs in a destructor
56 }

57 catch (...){}

58 }

Explanation:

In the class Cube's destructor at line 31, an error is raised when random _int is greater than 0. As random_int was declared as a
volatile unsigned int, this condition is always true.

At line 13, in the desctructor of class Rectangle, the test on the random_int value may be true when it is different from O.
Thus, it is possible that the exception israised or not in the destructor, and an orange warning is displayed instead.

Destructors are called during stack unwinding when an exception is thrown. In this case any exception thrown by a destructor
would cause the program to terminate. Therefore it is better programming to catch exceptions in destructors.

Release 2007a+ 270/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.29. Main, tasks or C library function throws: EXC
Check that functions used at C level, in atask or in main do not raise exceptions.

C++ Example:

1 #i ncl ude <cstdlib>

2 #i ncl ude <i ostreanp

3 static volatile int randomint = 1;

4

5 extern "C' {

6 int conmpare (const void * a, const void * b) { // EXC Verifeid: [main, task
or Clibrary function does not throw

7 return (*(int*)a *(int*)b);

8 }

9 int c_conpare_bad (const void *k, const void *e) { // EXC ERROR [nmin, task
or Clibrary function throws]

10 1;

11 }

12 b

13

14 typedef int arrayT[5];

15

16 cl ass arrayToRange

17 {

18 publi c:

19 arrayToRange(arrayT* a) :tab(a) {};

20 arrayT* returnTabl nOrder () {

21 gsort(*tab, 5, sizeof(int), conpare);

22 return tab;

23 }

24 arrayT* returnTabl nOrderBad() {

25 gsort(*tab, 5, sizeof(int), c_conpare_bad);

26 return tab;

27 }

28 pr ot ect ed:

29 arrayT* tab;

30 };

31

32 void main(void) // EXC Verified: [main, task or Clibrary function does not
t hr owj

33 {

34 try

35 {

36 arrayT tablnit = {1, 3,4, 2,5};

37 arrayT* table = & ablnit;

38 arrayToRange ArrayTest (table);

39 ArrayTest.returnTabl nOrderBad(); // No junp to encl osing handl er
40 ArrayTest.returnTabl nOrder();

Release 2007a+ 271377

Revision 4.2 vA

41 }

42 catch (...) { /1l grey code
43 cout << "error raised:" << "bye"; // grey code
44 }

45 }

Explanation:

In this example, we called a C stubbed function, gsort defined in the include file cstlib, which returns a sorted array of
integers. Two functions, defined in a class called arrayToRange, cal this gsort function:

. Thefirst one, returnTablnOrder, calls gsort, with a C function pointer as third parameter, which can not raise an
exception. So PolySpace displays a green message (line 6).

. The second one, returnTablnOrderBad, uses a C function pointer which always raises an exception. PolySpace
displays ared message on the C function (line 9).

Limitation: even if c_compare_bad function always raise an exception, PolySpace does not propagate to enclosing
handler. Indeed at line 39, al is green and the analysis continue even if call is surrounded by atry/catch leading to grey
code in catch block.

Release 2007a+ 272/377
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.3.30. exception raised is not specified in the throw list: EXC
Check to determine whether a function has thrown a non authorized exception.

C++ Example:

1 #i ncl ude <string>

2

3 usi ng nanmespace std,;

4

5 i nt negative bal ance = -300;

6

7 cl ass Not Possi bl e

8 {

9 publi c:

10 > &) .COR 0O.error.htm " nane="L10- C2" >Not Possi bl e(const string & s)

Error_Message(>_ & .NP.1l.error.htm "™ name="L10-C48">s)> &) .COR 2.error. htm "
name="110- C50" >{};

11 ~Not Possi bl e(){};

12 string Error_Message;

13 H

14

15 cl ass Account

16 {

17 publi c:

18 Account (1 ong accountlnit):account(accountinit) {}
19 void debit (long amount) throw (int, char);
20 | ong get Account () { return account; };

21 prot ect ed:

22 | ong account;

23 3

24

25 voi d Account::debit(long anmount) throw (int, char) { // EXC ERROR [exception
raised is not specified in the throw list]

26 if ((account - anpunt) < negative_bal ance)

27 throw Not Possible ("error");

28 account = account - anount;

29 }

30

31 voli d main (void)

32 {

33 try {

34 Account *James = new Account (12000);

35 Janes -> debit(13000); /1 NTC ERROR: propagation of not
speci fi ed exception

36 long total = Janes -> getAccount();

37 }

38 cat ch (Not Possi bl e&) {}

Relcase 2007a+ 273377

Revision 4.2 vA

39 catch (...){};

40 }
41
Explanation:

In the above example, the Account class is defined with the debit function which allows to throw the specified exception.
This function can only catch the int and char exceptions. The bank authorized an overdraft of 300 euros. The James's
account is created with an initial balance of 12000 Euros. So, at line 35, his account is debited with 13000. In the debit
function, the if condition (line 27) istrue, thus a NotPossible exception is raised. Unfortunately, this exception type is not
allowed within the throw list at line 25 even if the catch operand allows it. So PolySpace detects an error.

Release 2007a+ 274/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.31. throw during catch parameter construction: EXC
Check to prevent throw during dynamic initialisation in constructors and during initialization of argumentsin in catch.

C++ Example:

1 #i ncl ude <string>

2

3 static volatile int randomint = 1;
4 static volatile int randomred = 0;
5

6 class error{};

7

8 cl ass Not Possi bl e

9 {

10 public:

11 Not Possi bl e(const Not Possi bl e&) // EXC ERROR [function throws (analysis
junmp to encl osing handler)]

12 {

13 throw error();

14 1

15 Not Possi bl e() /1 NRE ERROR: [function throws (analysis
junp to encl osing handl er)]

16 {

17 t hr ow Not Possi bl e(7);

18 3

19 Not Possi bl e(int){};

20 ~Not Possi bl e() {};

21 private:

22 string Error_Message;

23 ¥

24

25 cl ass Test

26 {

27 public:

28 Test(int val) : value(val){};

29 returnval (){

30 if (random.int)

31 throw error();

32 el se

33 return val ue;

34 }

35 private:

36 I nt val ue;

37 b

38

Release 2007a+ 275/377

Revision 4.2 vA

39 int main() {

40

41 try {

42 Test* T = new Test(1);

43 if (randomred)

44 t hrow Not Possible(); // EXC ERROR [call to NotPossible throws
(analysis junps tp enclosing handl er)]

45 el se

46 T->returnval ();

47 if (randomred) {

48 Not Possi bl e * Npos = new Not Possi ble(); // EXC ERROR [throw during
dynamic initialisation]

49 }

50 }

51 cat ch(Not Possi ble a) {} /1 EXC ERROR [throw during catch paraneter
conctruction]

52 catch(...) {}

53 }

Explanation:

At line 48 of the previous example, during dynamic initialisation of Npos, a call to default constructor NotPossibleis
made. This constructor raises an exception leading to the EXC error. Indeed, raising an exception during a dynamic
initialisation is not authorized.

In same example at line 51, an exception is catched by the throw coming from line 44. A variable of type NotPossibleis
created at line 48 using also same default constructor. However, this constructor throws an an integer exception leading
tored error at line 48.

Each catch clause (exception handler) is like afunction that takes a single argument of one particular type. The identifier
may be used inside the handler, just like a function argument. Moreover, the throw of an exception in a catch block is
not authorized.

Release 2007a+ 276/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.32. Continue execution in __except: EXC

Check to establish whether in a__except catch block the use of MACRO EXCEPTION_CONTINUE_EXECUTION. This
check can only occur using avisual dialect.

C++ Example:

1

2 #i ncl ude <wi ndows. h>

3 #i ncl ude <excpt. h>

4

5 voi d* dat a;

6 struct No_Data {};

7

8 voi d* check_gl ob() { /1 EXC ERROR [function throws (analysis junps
to encl osing handl er)]

9 if (!data) throw No_Data(); // EXC ERROR []

10 return data;

11 }

12

13 int main() {

14 _try {

15 data = 0;

16 check gl ob(); /'l EXC ERROR: [call to check _glob() throws (analysis junps
to encl osing handl er)]

17 }

18 __except (data ==

19 ? EXCEPTI ON_CONTI NUE_EXECUTI ON // EXC ERROR [expression value is
EXCEPTI ON_CONTI NUE_EXECUTI ON|

20 . EXCEPTI ON_EXECUTE_HANDLER) {

21 data = new (voi d*); /'l Grey code

22 }

23 }

Explanation:

In this example, the call to function check_glob() throws an exception. This exception jumps to enclosing handler, in this case
the __except block. Using EXCEPTION_CONTINUE_EXECUTION, it could be possible normally to continue analysis and
comes back at line 9 asif exception never happend. In the example, datais assigned to new value at line 21 in __except block
and no more throw will occur.

PolySpace cannot handle this kind of behaviour and put ared error on the EXCEPTION_CONTINUE_EXECUTION
keyword since it has found a path to thisinstruction. It results grey code at line 21 and at line 10. All other red errors concern
management of the exception: function throws and call throws].

Note that it is possible to match functional behaviour using volatile keyword by replacing code at line 5: volatile void * data;

Release 2007a+ 277/377
Revision 4.2 vA

Previous

ace

TECHNOLOGIES

PonSp

Back to table of contents

7.3.33. Unreachable code: UNR

Check to establish whether different code snippets (assignments, returns, conditionnal branches and function calls) are reached

(Unreached code isreferred to as "dead code"). Dead code is represented by means of a coding on every check and
an UNR check entry

C++ example:

1

2 t ypedef enum {

3 I nt er nedi at e,

4 } enunttat e;

5

6 /] automatic stubs

7 int internediate_state(int);

8 int random.nt(void);

9

10 bool State (enunfttate stateval)

11 {

12 int i;

13 if (stateval return fal se;

14 return true,

15 }

16

17 int main (void)

18 {

19 int i;

20 bool res_end;

21 enunttate inter;

22

23 res_end State(lnit);

24 if (res_end fal se) {

25 res_end St at e(End) ;

26 inter = (enuntState)internedi ate_state(0);

27 if (res_end || Unreachabl e code for inter
== Wit

28 i nter

29 }

30 /'l use of initialized

31 if (randomint()) {

32 inter = (enuntState)internmedi ate _state(i); NIV ERROR. [non initialized
vari abl e]

33 if (inter Internedi ate) { Unreachabl e code after
runtime error

34 i nter

35 }

36 }

37 } else {

38 i = 1; Unr eachabl e code

Release 2007a+
Revision 4.2 vA

278/377

39 inter = (enunState)internmedi ate_state(i); /'l UNR check

40 }

41 return res_ end;
42 }

43

Explanation:

The exampleillustrates three possible reasons why code might be unreachable, and hence be coloured

1. Atline 30 aconditionnal part of a conditionnal branch is always true and the other part never evaluated because of the
standard definition of logical operator "||".

2. The piece of code after ared error is never evaluated by Polyspace Verifier. The call to the function and the following
line after line 35 are considered to be lines of dead code. Correcting the red error and re-launching would alow the
colour to be revised.

3. Atline 27, the first branch is always evaluated to true (if-{ part) and the other branch is never executed (else part at
lines 41 to 42).

Release 2007a+ 279/377
Revision 4.2 vA

Polyseagg

Previous Back to table of contents

7.3.34. Values on assignment: VOA

Check to establish whether the range taken by variables on assignment. Theses checks are only available when the -voa option

isused at launching time. Moreover, they are only available on scalar variables.
C++ Example:

Currently no VOA on enum

VOA: {[expr] =0}
VOA: {[expr] <= FLT_MAX}
VOA: {1<=[expr] <=8}

VOA: currently not

VOA: {0<=[expr] <=1}
VOA: currently not
VOA: {[expr]=9.9989}

Curently no VQOA on

1 static volatile int var_int = 1;

2 static volatile float volatile float = 1,

3

4 #defi ne MAX_ANA (9.999)

5 #define M N_ANA (-10.0)

6 #defi ne ZERO ANA ((MAX_ANA - M N_ANA)/ 2.0 - MAX_ANA)
7

8 float get_analogic (int);

9 bool get _digit (int);

10

11 typedef enum {Red, G een, Orange, Bl ack} VerifierColor;
12

13 t ypedef struct {

14 float a;

15 VerifierCol or b;

16 int c;

17 } Record;

18

19 int mai n(voi d)

20 {

21 bool var _digit;

22 Record var _rec;

23 int i;

24 fl oat var_sensor;

25 VerifierCol or var_color = Geen; /1
26

27 var_digit = 0; I
28 var _sensor = (float)(ZERO ANA); /1
and {FLT_M N <= [expr]}

29 for (i =0 /* VOA {[expr]=0} */ ; i <8 ; i++) { /]
30 var _sensor = get_analogic(i); I
conci se

31 var _digit = get digit(i); /1
32 }

33

34 /'l Fl oat exanpl es

35 var_sensor = volatile float; /1
conci se

36 var_sensor = MAX_ANA, /1
37

38 var_rec.a = var_sensor; /1
structures

39 var_rec.b = var _color;

Release 2007a+
Revision 4.2 vA

280/377

40 var_rec.c = 5;
41 }

Explanation:

Value on assignment are an informative checks than can only be green. They can be very helpfull to understand what
PolySpace knows about index of arrays and variables. Thus, it is easier to statuate on orange checks.

Release 2007a+

281/377
Revision 4.2 vA

y Q: HNOLOGIES
Previous Back to table of contents Next

7.3.35. Non Terminations: Calls and Loops
NTC and NTL are informative red checks.
« They are the only red checks which can be filtered out as shown below
« They don't stop the analysis
« As for other red checks, code found after them are grey (unreachable)
« These checks may only be red. There are no “orange” NTL or NTC checks.

= They can reveal a bug, or can simply just be informative

INTL In a Non Terminating Loop, the break condition is never met. Here are some examples.
while(1) {function_call(); } // informative NTL
while(x>=0) {x++; } // where x is an unsigned int. This may reveal a bug?

for(i=0; i<=10; i++) my_array|i] = 10; // where “int my_array[10];” applies. This red NTL reveals a
bug in the array access, flagged in orange

ptr = NULL; for(i=0; i<=100;) *ptr=0; // the first iteration of the loop is red, and therefore it is
flagged as an NTL. The “i++” will be grey, because the first iteration crashed.

INTC Suppose that a function calls f(), and that function call is flagged with a red NTC check. There
could be five distinct explanations:

1. *“f" contains a red error;
2. “f"contains an NTL ;

3. “f"contains an NTC;
4

. “f" contains an orange which is context dependant; that is, it is either red or green.
For this particular call, it makes the function “f” crash.

5. “f"is a mathematic function, such as sqrt, acos which has always an invalid input
parameter

Remember, additional information can be found when clicking on the NTC

Note that a sqrt check is only coloured if the input parameter is never valid. For instance, if the variable x may take
any value between -5 and 5, then sqrt(x) has no colour.

The list of constraints which cannot be satisfied (found by clicking on the NTC check) represents the variables that
cause the red error inside the function. The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

Release 2007a+ 282/377
Revision 4.2 vA

« where the variable has a given value; and
= Where the variable is not initialized. (Perhaps the variable is initialized outside the set of files under analysis?).

If a function is identified which is not expected to terminate (such as a loop or an exit procedure) then the -known-
NTC function is an option. You will find all the NTCs and their consequences in the known-NTC facility in the Viewer,
allowing you to filter them.

Related subjects:
7.3.35.1. Non Termination of Call: NTC

7.3.35.2. Non Termination of Loop: NTL

Release 2007a+ 283/377
Revision 4.2 vA

PonSpace

TECHHOLOGIES

Previous Back to table of contents Next

7.3.35.1. Non Termination of Call: NTC

Check to

establish whether a procedure call returns. It is not the case when the procedure contains an

endless loop or acertain error,

or if the procedure calls another procedure which does not terminate. In the latter instance, the status of
this check is propagated to caller.

C++ example:

1

2 static volatile int x = 1,

3

4 vol d foo(int x)

5 {

6 int vy =1 X; /1 ZDV Warni ng: depends of the context
7 while(1l) { /1 NTL ERROR. | oop never term nates
8 1t (y '=x) {

9 y =1/ (y-x); /1 ZDV Verified

10 }

11 }

12 }

13

14 voi d mai n(void) {

15

16 it (_x)

17 foo(0); // NTC ERROR Zero DiVision (ZDV) in foo

18 it (_x)

19 foo(2); // NTC ERROR Non Term nation Loop (NTL) in foo
20 }

21

Explanation:

In this example, the function foo is called twice in main and neither of these 2 calls ever terminates:

1. Thefirst never returns because a division by zero occurs at line 6 (bad argument value), and
propagation of this error is propagated to caller at line 17.

2. The second never terminates because of an infinite loop (red NTL) at line 7. Thiserror is
propagated to caller at line 19.

Release 2007a+
Revision 4.2 vA

284/377

Asan inside, note that by using either the -context-sensitivity " foo" option or the -contex-sensitivity-
auto option at launch time, it is possible for PolySpace to show explicitely that aZDV error comes from

thefirst call of foo in main.

Release 2007a+ 285/377
Revision 4.2 vA

PonSp

ace

TECHNOLOGIES

Previous Back to table of contents Next
7.3.35.2. Non Termination of Loop: NTL

Check to establish whether aloop (for, do-while, while) terminates.

C++ example:

1

2 /'l prototypes fo functions

3 voi d send_dat a(doubl e dat a);

4 voi d updat e_al pha(doubl e *a);

5 static volatile double acq =0.0;

6 static volatile int start_ = 0;

7 t ypedef void (*pfvoid)(void);

8

9 extern void | aunch (pfvoid);

10

11 voi d task(void)

12 {

13 doubl e acq, filtered_acq, al pha;

14

15 /1 1Init

16 filtered acq = 0.0;

17 al pha = 0. 85;

18

19 while (1) { /1 NTL ERROR: [non term nation of | oop]

20 /1 Acquisition

21 acq = _acaq;

22 /'l Treatment

23 filtered_acq = acq + (1.0 - alpha) * filtered_acq;

24 /'l Action

25 send_data(filtered_acq);

26 updat e_al pha(&l pha) ;

27 }

28 }

29

30 void rte_l oop(void)

31 {

32 int i;

33 doubl e twent yFl oat [20];

34

35 for (i =0; I <= 20; i++) { [// NIL ERROR propagation of OBAl ERROR

36 twentyFloat[i] = 0.0; /1 OBAI Warning: 20 verification with i in

[0, 19]

37 /1 and one ERROR with i = 20

38 }

39 }

Release 2007a+
Revision 4.2 vA

286/377

40

41 voi d main()

42 {

43 if (start)

44 | aunch(t ask);

45

46 rte | oop(); /1 NTC ERROR propagati on of NTL error
47 }

Explanation:

In the example at line 19, the "continuation condition" is always true and the loop will never exit. Thus PolySpace will
raise an error. In some case, the condition is not trivial and may depend on some program variables. Nevertheless
Verifier isstill able to analyse those cases.

On the other error at line 35, the red OBAI related to the 21th execution of the loop has been tranformed in an orange
warning because of the 20 first verified executions.

Release 2007a+ 287/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4. Advanced results review

Related subjects:
7.4.1. Red checks wher e grey checks wer e expected

7.4.2. Potential side effect of ared error

Release 2007a+ 288/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.1. Red checks where grey checks were expected

By default when PolySpace continues analysis when it finds a red error. It is used to deal with two
primary circumstances:

1. Ared error appears in code which was expected to be dead code.
2. Ared error appears which was expected, but the analysis is required to continue.

PolySpace performs an upper approximation of variables. Consequently, it may be true that PolySpace
analyses a particular branch of code as though it was accessible, despite the fact that it could never be
reached during “real life” execution. In the example below, there is an attempt to compare elements in
an array, and PolySpace is not able to conclude that the branch was unreachable. PolySpace may
conclude that an error is present in a line of code, even when that code cannot be reached.

Consider the figure to the right. As a result of
imprecision, each colour shown can be approximated

by a colour immediately above it in the grid. It is clear o
that green or red checks can be approximated by ol B
orange ones, but the approximation of grey checks is it 3
: 3 %
less obvious. Red @ ®
iy F,
b ..-__-'
3
o |t

During PolySpace analysis, data values possible at execution time are represented by supersets
including those values — and possibly more besides.

Grey code represents a situation where no valid data values exist. Imprecision means that such
situation can be approximated

* by an empty superset;
* by a nonempty super set, members of which may generate checks of any colour.
And hence PolySpace cannot be guaranteed to find all dead code in an analysis.

However, there is no problem in having grey checks approximated by red ones. Where any red error is
encountered, all instructions which follow it in the relevant branch of execution are aborted as usual. At
execution time, it is also true that those instructions would not be executed.

Consider the following “example™. i f (condition) then action_producing_a red;

Release 2007a+ 289/377
Revision 4.2 vA

After the "i f " statement, the only way execution can continue is if the condition is false; otherwise a
red check would be produced. Therefore, after this branch the condition is always false. For that
reason, the code analysis continues, even with a specific error. Remember that this propagates values
throughout your application. None of the execution paths leading to a runtime error will continue after
the error and if the red check is a real problem rather than an approximation of a grey check, then the
analysis will not be representative of how the code will behave when the red error has been addressed.

It is applicable on the current example:

1 int a[] ={ 1,2,3,4,5,7,8,9,10 };

2 voi d mai n(voi d)

3 {

4 i nt x=0;

5 int tnp;

6 if (a[5] > a[6])

7 tnp = 1 /x; // RED ERROR [scal ar division by zero] in grey code
8 }

Release 2007a+ 290/377
Revision 4.2 vA

y R HNOLOGIES
Previous Back to table of contents Next

7.4.2. Potential side effect of ared error

This section explains why when a red error has been found the analysis continues but some cautions need to be
taken. Consider this piece of code:

i nt *global _ptr; voi d ot her _function(void)
int variable_ it_points_to; {
if (condition==1)
\voi d big red(void)
{ b
int r;

int ny_zero = 0;
if (condition==1)

r =1/ ny_zero; /! red ZDV

/1 hundreds of lines
gl obal _ptr = &variable_it_points_to;
ot her _function();

}

PolySpace works by propagating data sets representing ranges of possible values throughout the call tree, and
throughout the functions in that call tree. Sometimes, PolySpace internally subdivides the functions for analysis, and
the propagation of the data ranges need several iterations (or integration levels) to complete. That effect can be
observed by examining the colour of the checks on completion of each of those levels. It can sometimes happen
that:

« PolySpace will detect grey code which exists due to a terminal RTE which will not be flagged in red until a
subsequent integration level.

» PolySpace flags a NTC in red with the content in grey. This red NTC is the result of an imprecision, and
should be grey.

Suppose that an NTC is hard to understand at given integration level (level 4):
« If other red checks exist at level 4, fix them and restart the analysis

« Otherwise, look back through the results from each previous level to see whether other red errors can be
located. If so, fix them and restart the analysis

Release 2007a+ 291/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8. Options description

This section describes all options available using PolySpace Desktop and PolySpace Verifier. All
options, excepted multitasking options, are accessible through the two graphical user interfaces

“Pol ySpace | auncher” and “Pol ySpace Deskt op Launcher”.
They are also accessible using the associated batch command: pol yspace- cpp and pol yspace-
deskt op- cpp. In the following, it only refers to “pol yspace- cpp” batch command.

Related subjects:
8.1. Sources/Includes

8.2. General

8.3. TargetsCompilers

8.4. Compliance with standards

8.5. Inner settings

8.6. Precision/Scaling

8.7. Multitasking (PolySpace Server only)
8.8. Specific batch options

Release 2007a+ 292/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.1. Sources/Includes

Related subjects:
8.1.1. -results-dir Results Directory

8.1.2. -sourcesfilesor -sour ces-list-file file name
8.1.3. -l directory

Release 2007a+ 293/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.1.1. -results-dir Results Directory

This option specifies the directory in which Verifier will write the results of
the analysis. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration
file 1s to be copied using the "Save as" option.
Default:

Shell Script: The directory in which tool is launched.

From Graphical User Interface: C:\PolySpace Results

Example Shell Script Entry:
pol yspace-cpp -results-dir RESULTS ...
export RESULTS=results "date +%d%B %1HYV YA
pol yspace-cpp -results-dir ~pwd /$RESULTS ...

Release 2007a+ 294/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.1.2. -sourcesfilesor -sources-list-file file_ name

-sources "filel[file2[...]]" (Linux and Sol ari s)

or

-sources "filel[,file2[, ...]]" (w ndows, Linux and Sol aris)
or

-sources-list-file file_name (not a graphical option)

List of source files to be analyzed, double-quoted and separated by commas. Note that UNIX standard
wild cards are available to specify a number of files.

Note:

The specified files must have valid extensions: *. (¢| C] cc| cpp| CPP| cxx| CXX)

Defaults:

sources/ *. (c| C cc| cpp| CPP| cxx| CXX)

Example Shell Script Entry under linux or solaris (files are separated with a white space):
pol yspace-cpp -sources "ny_directory/*. cpp"

pol yspace-cpp -sources "ny directory/filel.cc other _dir/file2.cpp”

Example Shell Script Entry under windows (files are separated with a comma):
pol yspace-cpp -sources "ny_directory/filel.cpp,other _dir/file2.cc"

Using - sour ces-list-fil e, each file name need to be given with an absolute path. Moreover, the
syntax of the file is the following:
- Onefile by line.
- Each file name is given with its absolute path.
Note:
This option is only available in batch mode.

Example Shell Script Entry for -sources-list-file:
pol yspace-cpp -sources-list-file "C:\Analysis\files.txt"

pol yspace-cpp -sources-list-file "/home/poly/files.txt"

Release 2007a+ 295/377
Revision 4.2 vA

Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Back to table of contents Next

8.1.3. -l directory

This option is used to specify the name of a directory to be included when
compiling C++ sources. Only one directory may be specified for each —I, but
the option can be used multiple times.
Default:

- When no directory is specified using this option, the ./sources directory (if
it exists) is automatically included

- If several include-dir are mentioned, the ./sources directory (if it exists), is
implicitly added at the end of the "-1" list
Example Shell Script Entry-1:

pol yspace-cpp -1 /coml/inc -1 /coml/sys/inc
1s equivalent to

pol yspace-cpp -1 /coml/inc -1 /coml/sys/inc -1 ./sources
Example Shell Script Entry-2:

pol yspace- cpp

is equivalent to
pol yspace-cpp -1 ./sources

296/377

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.2. General
This section collates all options relating to the identification of the analysis.

Related subjects:
8.2.1. -prog Session identifier
8.2.2. -date Date
8.2.3. -author Author
8.2.4. -verif-version Version
8.2.5. -voa
8.2.6. -keep-all-files
8.2.7. -continue-with-existing-host
8.2.8. -allow-unsuppor ted-linux

Release 2007a+ 297/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.2.1. -prog Session identifier

This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.
Default:

Shell Script:polyspace

GUI:New_Project

Example shell script entry:
pol yspace-cpp -prog nyApp ...

Release 2007a+ 298/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.2.2. -date Date

This option specifies a date stamp for the analysis in dd/mm/yyyy format.
This information
is labelled in the GUI as the Date. The GUI also allows alternative default
date formats, via the Edit/Preferences window.
Default:

Day of launching the analysis

Example shell script entry:
pol yspace-cpp -date "02/01/2002". ..

Release 2007a+ 299/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.3. -author Author

This option is used to specify the name of the author of the
verification.
Default:

the name of the author is the result of the whoami command

Example shell script entry:
pol yspace-cpp -author "John Tester"

Release 2007a+

300/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

8.2.4. -verif-version Version

Specifies the version identifier of the verification. This option can be used to
identify different analyses. This information is identified in the GUI as the
Version.
Default:

1.0.

Example shell script entry:
pol yspace-cpp -verif-version 1.3 ...

Release 2007a+ 301/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.5. -voa

When applied at launch time, this option enables the inspection of calculated
domains for simple type assignments (scalar or float).

A new category of checks - named VOA - is generated on " =" of some scalar
assignments to give the ranges. VOA checks are not available for volatile
variables.

Default:

Disabled by default

Note:

Depending on code optimisation, this check may not be present at all
assignment locations

Example Shell Script Entry:

pol yspace-cpp -voa ...

Release 2007a+ 302/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.6. -keep-all-files

When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart Verifier from the end of
any complete pass (provided the source code remains entirely unchanged). If
this option is not used, it is only possible to restart Verifier from scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the Verifier.

Release 2007a+ 303/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.7. -continue-with-existing-host

When this option is set, the analysis will continue even if the system is under
specified or its configuration is not as preferred by PolySpace. Verified
system parameters include the amount of RAM, the amount of swap space,
and the ratio of RAM to swap.

Default:

Verifier stops when the host configuration is incorrect or the system is
under specified.

Example Shell Script Entry:
pol yspace-cpp -conti nue-w th-existing-host

Release 2007a+

304/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents

8.2.8. -allow-unsupported-linux

This option specifies that PolySpace will be launched on an unsupported OS Linux distribution.

In such case a warning is displayed in he log file against possible incorrect behaviours:

E R I b b b S b b S I R I I R IR R S b b b b S b S R SR R I b S S b I b b b I SRR e

* k% * k% %
* k% V\ARNING * k% %
* k% * k% %
* Kk You are runni ng Pol ySpace Verifier on an kR
kK unsupported Linux distribution. It may |ead * ok
* Kk to incorrect behaviour of the product. Pl ease kR
kK note that no support will be available for * ok
* Kk this operating system kR
* k% * k% %

E R I S b b b b S R I I R b b b b S b S S SRR I b S S b b b b b b S I R

Default:
Disable

Example Shell Script Entry:
pol yspace-cpp -al | ow unsupported-|inux ...

Release 2007a+
Revision 4.2 vA

305/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.3. Targets/Compilers

Related subjects:
8.3.1. -target TargetProcessor Type

8.3.2. -OS-target OperatingSystemT ar get

8.3.3. -D compiler-flag

8.3.4. -U compiler-flag

8.3.5. -includefilel] fileZ],...]]

8.3.6. -post-pr epr ocessing-command command

8.3.7. -post-analysis-command <file hame> or " command"

Release 2007a+ 306/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.3.1. -target TargetProcessorType

Specifies the target processor type.
This option informs Verifier of the size of fundamental data types and of the
endianess of the target machine.
Possible values are:
sparc, m68k, powerpc, 1386, c-167.

However, code which is to be run on other processor types can also be
analysed if the data properties which are relevant to Verifier are common to
one of the processor types listed.
Default:

sparc

Example shell script entry:
pol yspace-cpp -target n68k ...

Release 2007a+ 307/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.3.2. -OS-target OperatingSystemTarget
Specifies the operating system target for PolySpace stubs.
Possible values are 'sol ari s', 'l i nux', 'vxWbr ks', 'vi sual ' and 'no- pr edef i ned- OS'. This option
allows PolySpace to determine which system definitions should be given to the preprocessor in order to
analyze the included files properly. - OS-t ar get no- pr edef i ned- OS may be used in conjunction
with -include or/and -D to give all of the proper system preprocessor flags. Details of these may be
found by executing the compiler for the project in verbose mode. They are also listed in “OS and target
specifications”.

Default:
Sol ari s

Note:
Only the ' | i nux' include files are provided with Verifier (see the include folder in the installation

directory). Projects developed for use with other operating systems may be analysed by using the
corresponding include files for that OS. For instance, in order to analyse a vxWor ks project it is

necessary to use the option -1 <<path_to_t he vxWorks_incl ude_fol der>>.

Example shell script entry:
pol yspace-cpp -OS-target no-predefined-0S \
-D GCC_MAJOR=2 —include /conplete path/inc/gn.h

Release 2007a+ 308/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.3.3. -D compiler-flag

This option is used to define macro compiler flags to be used during
compilation phase.
Only one flag can be used with each —D as for compilers, but the option can

be used several times as shown in the example below.
Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:
pol yspace-cpp -D HAVE MYLIB -D USE COML . ..

Release 2007a+ 309/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.3.4. -U compiler-flag

This option is used to undefine a macro compiler flags
As for compilers, only one flag can be used with each —U, but the option can

be used several times as shown in the example below.
Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:
pol yspace-cpp -U HAVE MYLIB -U USE COWL . ..

Release 2007a+

310/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.3.5. -include file1[,file2[,...]]

This option is used to specify files to be included by each C++ file involved
in the analysis.

Default:

No file is universally included by default, but directives such as "#include
<include file.h>" are acted upon.

Example Shell Script Entry:

pol yspace-cpp -include "pwd /sources/a file.h -include /inc/

inc file.h ...
pol yspace-cpp -include /the _conplete path/mnmy _defines.h ...

Release 2007a+ 311/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.3.6. -post-pr epr ocessing-command command

When this option is used, the specified script file or command is run after the pre-processing
phase on each source file. The command should be designed to process the standard output

from pre-processing and produce its results in accordance with that standard output.
Default:

No command.
Example Shell Script Entry —file name:
to remove the key word i nt er r upt or @ear, you can type the following command
pol yspace-c - post-preprocessi ng-command ~pwd /
renove_bad_keywor ds
where r enove_bad_keywor ds is the following script :
#!/ bi n/ sh
sed "s/ @ear//g" | sed "s/interrupt//g"
Example Shell Command Entry:
This example performs the same function as that illustrated above, but specifies the command
line directly:
pol yspace-c - post-preprocessi ng-conmand "sed s/ @ear//g"

Release 2007a+ 312/377
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

8.3.7. -post-analysis-command <file_name> or " command"

When this option is used, the specified script file or command is executed once the analysis has
completed.

The script or command is executed in the results directory of the analysis.

Execution occurs after the last part of the analysis. The last part of is determined by the —to option.
Note that depending of the architecture used, notably when using remote launcher, the script can be

executed on the client side or the server side.

Default:
No command.

Example Shell Script Entry — file name:
This example shows how to send an email to tip the client side off that his analysis has been ended.
This example supposes that the mai | x command is available on the machine. So the command looks
like:
pol yspace-cpp -post-anal ysis-conmand pwd /end _enail . sh
where end_emai | s. sh is the following script:
#!'/ bi n/ sh
echo "analysis finished” | mailx —s ”Pol ySpace Anal ysis ended”
“nane@onni n. cont

Example Shell Command Entry:

This example performs the same function as that illustrated above, but specifies the command line
directly:

pol yspace-cpp -post-anal ysis-conmand "nmail x —s \” Pol ySpace Anal ysis ended\”
\ “nane@omai n. com """

Release 2007a+ 313/377
Revision 4.2 vA

mailto:name@domain.com
mailto:name@domain.com

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4. Compliance with standards

Related subjects:
8.4.1. -dos

8.4.2. Embedded Assembler

8.4.3. -wchar -t-is-=unsigned-long
8.4.4. -size-t-is-unsigned-long
8.4.5. -no-extern-C

8.4.6. -no-stl-stubs

8.4.7. -dialect DialectName

8.4.8. -wchar-t-is

8.4.9. -for -loop-index-scope
8.4.10. Visual specific options
8.4.11. -ignor e-constant-over flows
8.4.12. -allow-undef-variables
8.4.13. -allow-negative-oper and-in-shift
8.4.14. -Wall

Release 2007a+ 314/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.4.1. -dos

This option must be used when the contents of the include or sour ce
directory comes from a DOS or Windows file system. It deals with upper/
lower case sensitivity and control characters issues. Concerned files
- header files: all include dir specified (-1 option)
- source files: all sources files selected for the analysis (-sources option)
#include "..\n¥ TEst.h"AM
#include "..\nY other FILE H' "M
into
#include "../ny_test.h"
#include "../ny_other file.h"
Default:
disabled by default
Example Shell Script Entry:
polyspace-cpp -I /ust/include -dos -1 ./my copied_include dir -D test=1

Release 2007a+ 315/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.4.2. Embedded Assembler

PolySpace stops the execution when detecting assembler code and displays an error message. It can
continue the execution if it is requested by the user with the option —discard-asm.

PolySpace ignores the assembler code by assuming that the assembler code does not have any side
effect on global variables. Delimiters for assembler code to ignore are given by the user with the
options —asm-begin and —asm-end or can be recognized by PolySpace following C++ standard
specified asm declarations: __asmand __asm__

Related subjects:
8.4.2.1. -discard-asm

8.4.2.2. Pragmas asm

Release 2007a+ 316/377

Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents

8.4.2.1. -discard-asm
This option instructs the PolySpace analysis to discard assembler code. If this option is used, the
assembler code should be modelled in cpp.
This option is not compatible with -asm-begin and -asm-end options.
Default:
Embedded assembler is treated as an error.
Example Shell Script Entry:
polyspace-cpp -discard-asm ...

Release 2007a+
Revision 4.2 vA

317/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.2.2. Pragmas asm

This option is used to allow compiler specific asmfunctions to be excluded from the analysis, with the
offending code block delimited by two #pr agma directives. Consider the following example:

#pragma asm begin_1

int foo 1(void) { /* asmcode to be ignored by Pol ySpace */ }
#pragma asmend_ 1

#pragma asm begin_2

void foo 2(void) { /* asmcode to be ignored by Pol ySpace */ }
#pragma asm end_2

Where "asm begi n_1" and "asm begi n_2" mark the beginning of asmsections which will be
discarded and “asm end_1" and "asm end_2" mark the end of those sections.
Also refer to the -discard-asm option with regards to the following code:

asmint foo_1(void) { /* asmcode to be ignored by Pol ySpace */ }
asmvoid foo 2(void) { /* asmcode to be ignored by Pol ySpace */ }

Example Shell Script Entry:
pol yspace-cpp -di scard-asm -asm begin "asm begin_1, asm begin_2" -asmend
"asmend_1, asm end_2"

Release 2007a+ 318/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.3. -wchar-t-is-unsigned-long

This option modify the target model.
It forces the wchar t type to be unsigned long.
Example Shell Script Entry:

pol yspace-cpp -wchar-t-is-unsigned-long ...

Release 2007a+ 319/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.4. -size-t-is-unsigned-long

This option modify the target model.
It forces the size t type to be unsigned long.
Example Shell Script Entry:

pol yspace-cpp -size-t-is-unsigned-long ...

Release 2007a+ 320/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.5. -no-extern-C

Some functions may be declared inside an extern “C” { } bloc in some files and not in others.
Then, their linkage is not the same and it causes a link error according to the ANSI standard.
Using this option will make PolySpace to ignore this error.

This permissive option may not solve all the extern C linkage errors.

Example Shell Script Entry:

pol yspace-cpp -no-extern-C ...

Release 2007a+ 321/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.6. -no-stl-stubs

PolySpace provide an efficient implementation of part of the Standard library (STL). This
implementation may not be compatible with includes files of the applications. In that case some linking
errors could arise.

With this option Verifier does not use his implementation of the STL.

Example Shell Script Entry:
pol yspace-cpp -no-stl-stubs ...

Release 2007a+ 322/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

8.4.7. -dialect DialectName

Specifies the dialect in which the code is written. Possible values are:

default, iso, cfront2, cfront3, visual,visual6, visual7.0, visual 7.1 and

vi sual 8.

vi sual 6 activate dialect associated with code used for Microsoft Visual 6.0 compiler and vi sual
activates dialect associated with Microsoft Visual 7.1 and subsequent.

If the dialectis vi sual * (vi sual, visual6,visual7.0,visual 7.1 and vi sual 8) -OS-target
must be set to Visual.

If the dialect is vi sual * option -dos, -OS-target Visual and -discard-asm are set by default.

vi sual 8 dialect activates support for Visual 2005 .NET specific compiler. All Visual 2005 .NET given
include files can compile with -no-stl-stubs option and without (recommended).

Default:
def aul t

Example Shell Script Entry:
pol yspace-cpp -dialect visual 8 ...

Release 2007a+ 323/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.4.8. -wchar -t-is

This option forces wchar _t to be treated as a keyword as per the C++ standard or as at ypedef as
with Microsoft Visual C++ 6.0/7.x dialects.
Possible values are 'keywor d' or 't ypedef "
. typedef is the default behaviour when using -dialect option associated to vi sual 6,
visual 7. 0 and vi sual 7. 1.
. keywor d is the default behaviour for all others dialects including vi sual 8.
This option allows the default behaviour implied by the PolySpace dialect option to be overridden.
This option is equivalent to the Visual C++/ Zc: wchar and / Zc: wchar - options.
Default:
def aul t (depends on -dialect value).

Example in sheel script:
pol yspace-cpp —wchar-t-is typedef

Release 2007a+ 324/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.4.9. -for-loop-index-scope

This option changes the scope of the index variable declared within a for loop.

Example:

for (int index=0; ...){};

i ndex++; // index variable is usable (out) or not (in) at this point

Possible values are 'i n' and 'out "

e out is the default for the -dialect option associated with values cfront 2, crfront 3,
vi sual 6, visual 7 andvi sual 7.1.

* i nisthe default for all other dialects, including vi sual 8.
The C++ ANSI standard specifies the index be treated as 'i n'.
This option allows the default behaviour implied by the PolySpace dialect option to be overridden.
This option is equivalent to the Visual C++ options / Zc: f or Scope and Zc: f or Scope-.
Default:
def aul t (depends on —dialect value)

Example in sheel script:

pol yspace-cpp —for-I|oop-index-scope in ...

Release 2007a+ 325/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.10. Visual specific options

Related subjects:
8.4.10.1. -import-dir directory

8.4.10.2. -ignor e-pragma-pack
8.4.10.3. -pack-alignment-value value
8.4.10.4. -support-FX-option-results

Release 2007a+ 326/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.4.10.1. -import-dir directory

One directory to be included by #import directive. This option must be used with -OS-target visual or -
dialect visual* (6, 7.0, 7.1 and 8). It gives the location of *. t | h files generated by a Visual Studio
compiler when encounter #import directive on *. t | b files.

Example Shell Script Entry:

polyspace-cpp -dialect visual8 -import-dir /coml/inc ...

Release 2007a+ 327/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.4.10.2. -ignore-pragma-pack

Visual C++ #pr agna directives specify packing alignment for structure, union, and class members.
These directives may be ignored to prevent link errors using option —ignore-pragma-pack.

PolySpace will stop the execution and display an error message if this option is used in non visual
mode or without dialect gnu (without - OS-t ar get vi sual or—di al ect vi sual *). See also “Link
messages” section.

Example Shell Script Entry:

pol yspace-cpp —di al ect vi sual —ignore-pragnma-pack ...

Release 2007a+ 328/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.4.10.3. -pack-alignment-value value

Visual C++ /Zp option specifies the default packing alignment for a project. Option -pack-alignment-
value transfers the default alignment value to PolySpace analysis.
The argument value must be: 1, 2, 4, 8, or 16. Analysis will stop the execution and display an error
message with a bad value or if this option is used in non visual mode (-OS-target visual or -dialect
visual* (6, 7.0 or 7.1)).
Default:

8

Example Shell Script Entry:
pol yspace-cpp —di al ect visual —-pack-alignnent-value 4 ...

Release 2007a+

329/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.4.10.4. -support-FX-option-results

Visual C++ /FX option allows the partial translation of sources making use of managed extensions to
Visual C++ sources without managed extensions. Theses extensions are currently not taken into
account by PolySpace and can be considered as a limitation to analyse this kind of code.

Using /FX, the translated files are generated in place of the original ones in the project, but the names
are changed from f 0o. ext tof 0o. nrg. ext .

Option — support-FX-option-results allows the analysis of a project containing translated sources
obtained by compilation of a Visual project using the /FX Visual option. Managed files need to be
located in same directory than original ones and PolySpace will analyses managed files instead of the
original ones without intrusion, and will permit to remove part of limitations due to specific extensions.
PolySpace will stop the execution and display an error message if this option is used in non visual
mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

Example Shell Script Entry:

pol yspace-cpp —di al ect vi sual - support-FX-option-results

Release 2007a+

330/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.11. -ignore-constant-overflows

This option specifies that the analysis should be permissive with regards to overflowing
computations on constants. Note that it deviates from the ANSI C standard.
For example,

char x = Oxff;

causes an overflow according to the standard, but if it is analysed using this option it becomes
effectively the same as

char x = -1;
With this second example, a red overflow will result irrespective of the use of the option.

char x = (rnd?0xFF:0xFE);

Default:
char x = Oxff; causes an overflow

Example Shell Script Entry:

pol yspace-cpp -ignore-constant-overflows ...

Release 2007a+ 331/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.4.12. -allow-undef-variables

When this option is used, PolySpace will continue in case of linkage errors due to undefined
global variables. For instance when this option is used, PolySpace will tolerate a variable
always being declared as extern

Default:

Undefined variables causes PolySpace to stop.

Example Shell Script Entry:
pol yspace-cpp -al |l ow undef-variables ...

Release 2007a+ 332/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.4.13. -allow-negative-operand-in-shift

This option allows a shift operation on a negative number.

According to the ANSI standard, such a shift operation on a negative number is illegal — for
example,

-2<< 2

With this option in use, PolySpace considers the operation to be valid. In the previous
example, the result would be -2<< 2= -8

Default:
A shift operation on a negative number causes a red error.
Example Shell Script Entry:

pol yspace-cpp -al |l ow negati ve-operand-in-shift

Release 2007a+ 333/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.4.14. -Wall

Force the C++ compliance phase to print all warnings.

Default:

By default, only warnings about compliance across different files are printed.
Example Shell Script Entry:

polyspace-cpp -Wall ..

Release 2007a+ 334/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.5. Inner settings

Related subjects:
8.5.1. -main sub_program name

8.5.2. Generate a main using a given class

8.5.3. -main-gener ator-calls

8.5.4. General optionsfor the generation of mains
8.5.5. -no-automatic-stubbing

8.5.6. -ignor e-float-rounding

8.5.7. -detect-unsigned-over flows

8.5.8. -extra-flags option-extra-flag

8.5.9. -cpp-extra-flagsflag

Release 2007a+ 335/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.5.1. -main sub_program_name

The option specifies the qualified name of the main subprogram when a visual —OS-target is selected.
This procedure will be analyzed after class elaboration, and before tasks in case of a multitask
application or in case of the -entry-points usage.
Possible values are:

main, _tmain, wmin, _tWnMain, wNnMain, WnMinandD | Min.

However, if the main subprogram does not exist and the option -main-generator is not set, PolySpace
will stop the analysis with an error message.
Default:
mai n
Example Shell script entry:
pol yspace-cpp -main WnMain -CS-target visual

Release 2007a+ 336/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.5.2. Generate a main using a given class

Related subjects:
8.5.2.1. -class-analyzer

8.5.2.2. -class-only
8.5.2.3. -class-analyzer-calls
8.5.2.4. -no-constructor s-init-check

Release 2007a+ 337/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.5.2.1. -class-analyzer

PolySpace C++ is a class analyzer. The user needs to know which part of his design he wants to
analyze. The user has two alternatives:

1. If a main program exists in the set of files given to the PolySpace analysis, then the analysis

continue with this main

2. Otherwise the user MUST specify one class name
PolySpace Verifier and Desktop have the same facility. You can choose or not to provide a main in
your application, and select one class instead.
If Mycl assNane does not exist in the application, analysis stops also. All public and protected function
members declared within the class, called within the code or not, will be analyzed separately and called
by a generated main.
This generated main, is not code compliant but visible in the graphical user interface within
__pol yspace_nmmai n. cpp file. It also initializes all global variables to random (see Getting started

section).

Example shell script entry:
pol yspace-cpp —cl ass-anal yzer Myd ass
pol yspace- deskt op-cpp —cl ass-anal yzer MyNanmespace: : Myd ass

Release 2007a+ 338/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.5.2.2. -class-only

This option can only be used with option —c| ass- anal yzer Myd ass. If option —cl ass- anal yzer

is not used, Analysis stops and displays an error message. With the option —class-only, only functions
associated to MyCl ass are analyzed. All functions out of class scope are automatically stubbed even
though they are defined in the source code.
Default:

disable
Example Shell Script Entry:
pol yspace-cpp —cl ass-anal yzer MO ass —cl ass-only...

Release 2007a+ 339/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.5.2.3. -class-analyzer-calls

This option can only be used with option —c| ass- anal yzer Myd ass. If option —cl ass- anal yzer

is not used, Analysis stops and displays an error message.
. Bydef aul t, all public and protected function members declared within the class, called within

the code or not, will be analyzed separately and called by a generated main. We call in this case
of eligible method or functions.
. Ifunused is specified, only functions not called by another eligible function are called.
Default:
def aul t is used
Example Shell Script Entry:
pol yspace-cpp —cl ass-anal yzer MyC ass —cl ass-anal yzer-calls unused ...

Release 2007a+

340/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.5.2.4. -no-constructors-init-check

By default, PolySpace checks for member initialization just after object construction and initialization
with -function-called-before-main when using —class-analyzer.

This option can only be used with option —class-analyzer. If option —cl ass- anal yzer is not used,

analysis stops and displays an error message.
Without this option, in the generated main in __pol yspace_mai n. cpp file, you will find some added
code checks like on the simple example below using —cl ass- anal yzer A options:
class A {
public: int i ; int *j ;
A() @ 1(0), j(O) { ; }
A(int a) : i(a) { ; }
3
n__ pol yspace_nmi n. cpp after a call to the constructor(s) and function called before main:
{ /* check NIV/NIP section */
check NIV(_ polyspace this->); // Proven NIV check
check_NIP(_ polyspace_this->); // Unproven NIP check: j is not
initialized in one constructor

}
Using the option, no more check of members is made.
Default:
Check is made for member scalars, floats and pointer member variables.

Example Shell Script Entry:
pol yspace-cpp —cl ass-anal yzer MyCl ass —no-constructors-init-check ...

Release 2007a+ 341/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.5.3. -main-generator-calls

This option is used with the - mai n- gener at or option, to specify the functions to be called.
Note that this option is protected by a license.
Eligible functions:
Every function declared outside a class and defined in the source code to analyse, is considered as
eligible when using the option.
The list of functions contains a list of short name (name without signature) separated by comas. If
the name of a function from the list is associated to a function not defined in the source code,
PolySpace stops and displays an error message. If the name of a function from the list is
ambiguous, all the functions with the same short name are called. If a function from the list does not
belong or is not eligible, PolySpace stops and displays an error message. This error message is put
in the log file.
Default values:
« none: No function is called. This can be used with a multitasking application
without main for instance.
. unused (default): Callallfunctions not already called within the code. Inline functions will
not be called by the generated main.
. all: all functions except inline will be called by the generated main.
. Custom Only functions present in the list are called from the main. Inline
functions can be specified in the list and will be called by the generated main.
Ani nl i ne (static or extern) function is not called by the generated main program with values al | or
unused. Ani nl i ne function can only be called with custom value: - mai n- generator-call s
cust omeny_i nlined_func.

Example:

pol yspace-cpp -nmai n-generator -nmain-generator-calls custom=function_1,
function_2

Release 2007a+ 342/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.5.4. General options for the generation of mains

Related subjects:
8.5.4.1. -function-called-before-main

8.5.4.2. -main-gener ator-writes-variables

Release 2007a+ 343/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.5.4.1. -function-called-before-main

This option is used with the mai n gener at or options —class-analyzer and —main-generator-calls
options to specify a function which will be called before all selected functions in the main.
Eligible functions:
Every function or method defined in the source code to analyse is considered as eligible when
using the option.
If the given name is ambiguous or is associated to a function not defined in the source code,
PolySpace stops and displays an error message. This error message is put in the log file.
Example:

pol yspace-cpp -mai n-generator-calls unused —function-cal |l ed-bef ore-
mai n MyFuncti on

Release 2007a+ 344/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.5.4.2. -main-generator-writes-variables

This option is used with the main generator options —class-analyzer and —main-generator-calls to
dictate how the generated main will initialize global variables.
Settings available:

* uni ni t: main generator writes random on not initialized global variables.

* none: no global variable will be written by the main.
 publi c: every variable except static and const variables are assigned a “random” value,
representing the full range of possible values
« all: everyvariable is assigned a “random” value, representing the full range of possible
values
e cust om only variables present in the list are assigned a “random” value, representing the
full range of possible values
Example
pol yspace-cpp —cl ass-anal yzer Myd ass -nmai n-generator-wites-vari abl es
uni ni t
pol yspace-cpp -nmai n-generator -nmain-generator-wites-variables
cust omevari abl e _a, variable_ b

Release 2007a+ 345/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Back to table of contents Next

Previous

8.5.5. -no-automatic-stubbing

By default, PolySpace automatically stubs all functions. When this option is used, the list of functions to
be stubbed is displayed and the analysis is stopped.

Benefits:
This option may be used when:
. The entire code is to be provided, which may be the case when analyzing a large piece of code.
When the analysis stops, it means the code is not complete.
. Manual stubbing is preferred to improve the selectivity and speed of an analysis.

Default:
All functions are stubbed automatically

Release 2007a+ 346/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.5.6. -ignore-float-rounding

Without this option, PolySpace rounds floats according to the IEEE 754 standard: simple precision on
32-bits targets and double precision on target which define double as 64-bits. With the option, exact
computation is performed.

Example:

1

2 void ifr(float f)

3 {

4 doubl e = 1. 27;

5 if ((double)l.27F == a) {

6

7 = 1.0F ;

8 /'l reached when -ignore-float-rounding is used or not
9 }

10 el se {

11

12 = 1. 0F ;

13 /'l reached when conpil ed under Visual and when -ignore-fl oat-
roundi ng i s not used

14 }

15 }

Using this option can lead to different results compared to the "real life" (compiler and target
dependent): Some paths will be reachable or not for PolySpace while they are not (or are) depending

of the compiler and target. So it can potentially give approximate results (should be).
This option has an impact on OVFL/UVFL checks on floats.

However, this option allows reducing the number of checks because of the “delta”
approximation.

For example:

« FLT_MAX (with option set) = 3.40282347e+38F
o FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F + A

1

2 void ifr(float f)

3 {

4 doubl e = 1.27,

5 if ((double)l.27F == 2a) {

6

7 = 1. 0F /] Overflow never occurs because f <= FLT_MAX
8 /'l reached when -ignore-float-rounding is used
9 }

Release 2007a+ 347/377
Revision 4.2 vA

10 else {
11

12 = 1. 0F ; [l OVFL could occur when f = (FLT_MAX + A)

13 /'l reached when -ignore-float-rounding is not used
14 }

15 }

Default:

IEEE 754 rounding under 32 bits and 64 bits.

Example Shell Script Entry:
pol yspace-cpp -ignhore-float-rounding ...

Release 2007a+ 348/377
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

8.5.7. -detect-unsigned-overflows

When this option is selected, PolySpace becomes more pedantic than the ANSI standard requires, with
regards overflowing computations on unsigned. Consider the examples below, which apply when the
option is in use.

Example 1:

unsigned char x;

x = 255;

X = x+1; //causes an overflow according to this option.

Without this option in place, example above would generate no error.

unsigned char x;

X = 255;

x = x+1; /] turns x into O (wap around).

Example 2:

unsi gned char x, y=1;

x = ~y; [/l causes an overfl ow because of type pronotion
Default:

disable

Example Shell Script Entry:
pol yspace-cpp -detect-unsi gned-overflows ...

Release 2007a+ 349/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.5.8. -extra-flags option-extra-flag

This option specifies an expert option to be added to the analyzer. Each word of the option (even the
parameters) must be preceded by -extra-flags.

These flags will be given to you by PolySpace Support as necessary for your analyses.
Default:

No extra flags.
Example Shell Script Entry:
pol yspace-cpp -extra-flags -paraml -extra-flags -parant

Release 2007a+

350/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.5.9. -cpp-extra-flags flag

It specifies an expert option to be added to a PolySpace C++ analysis. Each word of the option
(even the parameters) must be preceded by -cpp-extra-flags.

These flags will be given to you by PolySpace support as necessary.

Default:

no extra flags.

Example Shell Script Entry:
pol yspace-cpp -cpp-extra-flags -Wall

Release 2007a+

351/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6. Precision/Scaling

Related subjects:
8.6.1. -quick

8.6.2. -O(0-3)

8.6.3. -from verification-phase

8.6.4. -to verification-phase

8.6.5. -path-sensitivity-delta number

8.6.6. -context-senditivity " procl[,proc?|,...]]"
8.6.7. -context-sensitivity-auto

8.6.8. -respect-types-in-globals

8.6.9. -k-limiting number

8.6.10. -respect-types-in-fields

8.6.11. -inline" procl|,proc?],...]]"

8.6.12. Tuning precision and scaling parameters

Release 2007a+ 352/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.6.1. -quick

Very fast mode for PolySpace C++. This option is exclusive with -O(0-3), -from and -to verification-
phase options.
Benefits:
This option allows the user to have results very quickly. He will then focus on red and grey errors only,
as oranges are unreadable using this option. Up to 25 times faster than classical analysis using a mix
of O(precision level) and integration level.
Limitations:

- No NTL or NTC are displayed (non termination of loop/call)

- The global variable dictionary is not available

- No check is performed on floats

- The call tree is partially available but navigation is not possible

- Focus on red and grey only and do not look at oranges.
Example shell entry:
pol yspace-cpp -quick

Release 2007a+ 353/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.6.2. -O(0-3)

This option specifies the precision level to be used. It provides higher selectivity in exchange for more
analysis time, therefore making results review more efficient and hence making bugs in the code easier
to isolate. It does so by specifying the algorithms used to model the program state space during
analysis.

It is recommended that analyses should begin with the -quick option. Red errors and grey code can
then be addressed before re-launching Verifier using this option, applying a precision level as
described below.

Benefits
« A higher precision level contributes to a higher selectivity rate, making results review more
efficient and hence making bugs in the code easier to isolate.
« A higher precision level also means higher analysis time:
o -O0 corresponds to static interval analysis.
o -O1 corresponds to complex polyhedron model of domain values.
o -0O2 corresponds to more complex algorithms to closely model domain values (a mixed
approach with integer lattices and complex polyhedrons).
o -0O3is only suitable for code smaller than 1000 lines of code. For such codes, the
resulting selectivity might reach high values such as 98%, resulting in a very long
analysis time, such as an hour per 1000 lines of code.

Default:

-02

Example Shell Script Entry:

pol yspace-cpp -OlL -to pass4 ...

Release 2007a+ 354/377
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

8.6.3. -from verification-phase

This option specifies the verification phase to start from. It can only be used on an existing analysis,
possibly to elaborate on the results that you have already obtained.
For example, if an analysis has been completed -t 0 pass1, PolySpace can be restarted - f rom
passl and hence save on analysis time.
The option is usually used in an analysis after one run with the -to option, although it can also be used
to recover after power failure.
Possible values are as described in the -to veri fi cati on- phase section, with the addition of the
scr at ch option.
Notes:
- Unless the scr at ch option is used, this option can be used only if the previous analysis
was launched using the option - keep-al | -files.

- This option cannot be used if you modify the source code between two analyses.
Default:
From scrat ch
Example Shell Script Entry:
pol yspace-cpp -from cpp-to-il

Release 2007a+ 355/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

8.6.4. -to verification-phase

Specifies the verification phase after which PolySpace will stop analysis.

Benefits:

This option allows you to have a higher selectivity, and therefore to find more bugs within the code.
- A higher integration level contributes to a higher selectivity rate, leading to "finding more bugs"
with a given code.
- A higher integration level also means higher analysis time.

Possible values:

« cpp-conpl i ance (Reaches the compilation phase)

« cpp-nornmal i ze (Reaches the normalization phase)

« cpp-1ink (Reaches the link phase)

. cpp-to-il (Reaches the transformation to intermediate language)

. passO0 or CDFA or "Control and Data Flow Analysis"

. passl or "Software Safety Analysis level 1"

. pass?2 or "Software Safety Analysis level 2"

. pass3 or "Software Safety Analysis level 3"

. pass4 or "Software Safety Analysis level 4"

. ot her (stop analysis after level 20)
Note:
If you use -to other then PolySpace will continue until you stop it manually (via "PolySpace Install
Directory"/bin/kill-rte-kernel "Results directory"/"log file name") or stops until it has reached passZ20.
Default:
pass4

Example Shell Script Entry:
pol yspace-cpp -to "Software Safety Analysis |evel 3"...

pol yspace-cpp -to passO ...

Release 2007a+ 356/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6.5. -path-sensitivity-delta number

This option is used to improve interprocedural analysis precision within a particular pass (see -to

passl, pass2, pass3 or pass4). The propagation of information within procedures is done earlier than
usual when this option is specified. That results in improved selectivity and a longer analysis time.

Consider two analyses, one with this option set to 1 (with), and one without this option (without)
. alevel 1 analysis in (with) (passl) will provide results equivalent to level 1 or 2 in the (without)
analysis
. alevel 1 analysis in (with) can finish x times more than a cumulated level 1+2 analysis from
(without). "x" might be exponential.

. the same applies to level 2 in (with) equivalent to level 3 or 4 in (without), with potentially
exponential analysis time for (with).
Gains using the option
(+) highest selectivity obtained in level 2. No need to wait until level 4
(-) This parameter increases exponentially the analysis time and might be even bigger than a
cumulated analysis in level 1+2+3+4
(-) This option can only be used with less than 1000 lines of code.
Default:
0

Example Shell Script Entry:
pol yspace-cpp -path-sensitivity-delta 1

Release 2007a+ 357/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6.6. -context-sensitivity "procl[,proc2|,...]]"

This option allows the precise analysis of a procedure with regards to the discrete calls to it in the
analysed code.

Each check inside the procedure is split into several sub-checks depending on the context of call. It has
same effects than inlining a function but without duplicating as clones (see —inline).

Therefore if a check is red for one call to the procedure and green for another, both colours will be
revealed (e.g. by highlighting a special button in PolySpace Viewer).

Note: This option is especially useful when a run time error has been detected in a function and it is
called from a multitude of places.

Release 2007a+ 358/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6.7. -context-sensitivity-auto

This option is similar to the -context-sensitivity option, except that PolySpace automatically chooses the

procedures to be considered.
Usually, the ten functions which are the most called are automatically selected.

Release 2007a+ 359/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.6.8. -respect-types-in-globals

This is a scaling option, designed to help process complex code. When it is applied, PolySpace
assumes that global variables not declared as containing pointers are never used for holding pointer
values. This option should only be used with Type-safe C/C++ code, when it does not cause a loss of
precision. See also -respect-types-in-fields.

In the following example, we will lose precision using option —r espect -t ypes-i n- gl obal s option:
int Xx;

void tl(void) {

Int vy;

int *tnmp = &x;

*tmp = (int)&y;

y=0;

(int)x = 1; /1 x contains address of y

assert (y == 0); [// green with the option
}
PolySpace will not take care that x contains the address of y resulting a green assert.
Default:
PolySpace assumes that global variables may contain pointer values.

Example Shell Script Entry:
pol yspace-cpp -respect-types-in-globals ...

Release 2007a+ 360/377
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.6.9. -k-limiting number

This is a scaling option to limits the depth of analysis into nested structures during pointer analysis (see
tuning parameters).

Default:

There is no fixed limit.

Example Shell Script Entry:

pol yspace-cpp -k-limting 1 ...

In the usage above, analysis will be precise to only one level of nesting.

Release 2007a+ 361/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6.10. -respect-types-in-fields

This is a scaling option, designed to help process complex code. When it is applied, PolySpace
assumes that structure fields not declared as containing pointers are never used for holding pointer
values. This option should only be used with Type-safe C/C++ code, when it does not cause a loss of
precision. See also -respect-types-in-globals .
In the following example, we will lose precision using option —r espect -t ypes-i n-fi el ds option:
struct {

unsi gned x;

int f1;

int *z[2];
} SL;

void funct2(void) {
i nt *tnp;
Int vy;
((int**)&S1)[0] = &; /* Sl.x points ony */
tmp = (int*)S1. x;
y=0;
tnmp = 1, /[wite 1 intoy */
assert (y==0);
}
PolySpace will not take care that S1. x contains the address of y resulting a green assert.
Default:
PolySpace assumes that structure fields may contain pointer values.

Example Shell Script Entry:
pol yspace-cpp -respect-types-in-fields ...

Release 2007a+ 362/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6.11. -inline "procl[,proc2][,...]]"

A scaling option that creates a clone of each specified procedure for each call to it. Cloned procedures
follow a naming convention viz:
procedurel pst_cl oned_nb, where nb is a unique number giving the total number of cloned

procedures.

Such an inlining allows the number of aliases in a given procedure to be reduced, and may also
improve precision.

It is some times recommended to inline standard functions permitting to make copy or set amount of
memory, such as “nmenset ”, “strcpy”, “str ncpy”, “nencpy”, etc.

It can permit to find in an easy way run time errors (NTC for instance) which relate in this case the copy

or set of a big structure in a smaller one.
Limitations:
. Extensive use of this option may duplicate too much code and may lead to other scaling
problems. Carefully choose procedures to inline.
« This option should be used in response to the inlining hints provided by the alias analysis (log
file some times can give such kind of information).
« This option should not be used on mai n, task entry points and critical section entry points.

« When using this option with a method of a class, all overload of the method will apply to the
inline.
Example Shell Script Entry:
pol yspace-cpp —inline “nyclass:: nyfunc”

Release 2007a+ 363/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.6.12. Tuning precision and scaling parameters
. Precision versus time of analysis

There is a compromise to be made to balance the time required to obtain results, and the precision of
those results. Consequently, launching PolySpace with the following options will allow the time taken
for analysis to be reduced but will compromise the precision of the results. It is suggested that the
parameters should be used in the sequence shown — that is, if the first suggestion does not increase
the speed of analysis sufficiently then introduce the second, and so on.

* switch from -O2 to a lower precision;

. set the -respect-types-in-globals and -respect-types-in-fields options;
* set the -k-limiting option to 2, then 1, or O;

* stub manually missing functions which write into their arguments.

. Precision versus code size

PolySpace can make approximations when computing the possible values of the variables, at any point
in the program. Such an approximation will always use a superset of the actual possible values.

For instance, in a relatively small application, PolySpace Verifier might retain very detailed information
about the data at a particular point in the code, so that for example the variable VAR can take the
values { -2; 1; 2; 10; 15; 16; 17; 25 }. If VAR is used to divide, the division is green (because 0 is not a
possible value). If the program being analyzed is large, PolySpace Verifier would simplify the internal
data representation by using a less precise approximation, such as [-2; 2] U {10} U [15; 17] U {25} .
Here, the same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the analysis, PolySpace might
further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings when the size of the
program becomes large.

Note that the amount of simplification applied to the data representations also depends on the required
precision level (00, O2), PolySpace Verifier will adjust the level of simplification, viz.:

-O0 and —quick: shorter computation time. You only need to focus on red and grey checks.

-O2: less orange warnings.

-03: less orange warnings and bigger computation time.

Release 2007a+ 364/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.7. Multitasking (PolySpace Server only)

Concurrency options are not compatible with -main-generator options.

Related subjects:
8.7.1. -entry-pointstask1],task2/,...]]

8.7.2. Critical sections
8.7.3. -tempor al-exclusions-filefile name

Release 2007a+ 365/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

8.7.1. -entry-points taskl[,task2[,...]]

This option is used to specify the tasks/entry points to be analysed by the PolySpace Server, using a
comma-separated list with no spaces.
These entry points must not take parameters. If the task entry points are functions with parameters
they should be encapsulated in functions with no parameters, with parameters passed through global
variables instead.
Format:

« All tasks must have the prototype "voi d any_nane() "

. ltis possible to declare a member function as an entry point of an analysis, only and only if the
function is declared “st ati ¢ voi d task_nane()".

Example shell script Entry:
pol yspace-cpp -entry-points class::task _nane, tasknane, procl, proc?2

Release 2007a+ 366/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.7.2. Critical sections

-critical -section-begin "procl:csl[, proc2:cs2]"

and
-critical -section-end "proc3:csl[, proc4d:cs2]"

These options specify the procedures beginning and ending critical sections, respectively. Each uses a
list enclosed within double speech marks, with list entries separated by commas, and no spaces.
Entries in the lists take the form of the procedure name followed by the name of the critical section, with
a colon separating them.
These critical sections can be used to model protection of shared resources, or to model interruption
enabling and disabling.
Limitation:

. Name of procedure accept only voi d any_namne() as prototype.

. The beginning and the end of the critical section need to be defined in same block of code.
Default:
No critical sections.
Example Shell Script Entry:

pol yspace-cpp \
-critical -section-begin "start_my_senmaphore: cs" \
-critical -section-end "end _ny_senmaphore: cs”

Release 2007a+ 367/377
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

8.7.3. -tempor al-exclusions-file file_name

This option specifies the name of a file. That file lists the sets of tasks which never execute at the same
time (temporal exclusion).
The format of this file is:
e one line for each group of temporally excluded tasks,
» on each line, tasks are separated by spaces.
Default:
no temporal exclusions.
Example of a task specification file:

File named 'exclusions’ (say) in the 'sources' directory and containing:
taskl groupl task2 groupl

taskl group2 task2 group2 task3 group2

Example Shell Script Entry:
pol yspace-cpp -tenporal -exclusions-file sources/exclusions \

-entry-points taskl groupl,task2 groupl,taskl group2,\
task2 group2, task3_group?2 ...

Release 2007a+ 368/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.8. Specific batch options

Related subjects:
8.8.1. -server server name or _ip[:port number]

8.8.2. -h[elp]
8.8.3. -v [-version
8.8.4. -sour ces-list-file file name

Release 2007a+ 369/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.8.1. -server server _name _or_ip[:port_number]

Using pol yspace-renot e[- desktop] -[cpp] [-server [nanme or |P address][: <port
nunber >]] allows to send analysis to a specific or referenced PolySpace Queue manager server.
Note that If the option —ser ver is not specified, the default server referenced in the Pol ySpace-
Launcher . prf configuration file will be used as server.

When a —ser ver option is associated to the batch launching command, the name or IP address and a
port number need to be specified. If the port number does not exist, the 12427 value will be used by
default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:
pol yspace-renot e- deskt op-cpp —server 192.168.1.124:12400 ...

pol yspace-renot e-cpp ...
pol yspace-renot e-cpp —server Bergeron ...

Release 2007a+ 370/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.8.2. -h[elp]

It displays on screen a textual help including a short description of all options.

Release 2007a+ 371/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.8.3. -v |-version

Display the PolySpace version number.
Example Shell Script Entry:
pol yspace-cpp -v
Which will show a result similar to:
Pol ySpace r2007a+
Copyright (c) 1999-2007 Pol ySpace Technol ogi es

Release 2007a+ 372/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.8.4. -sour ces-list-file file_name

This option is only available in batch mode. The fi | e_nane file needs to be given with an absolute
path and its syntax is the following:
« One file per line.
. Each file name includes absolute path location.
Example shell script Entry:
pol yspace-cpp -sources-list-file "C:\Analysis\files.txt"
pol yspace-cpp -sources-list-file "/home/poly/files.txt"

Release 2007a+

373/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9. Appendix

Related subjects:
9.1. Glossary

9.2. Abstract semantic

Release 2007a+ 374/377
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
9.1. Glossary

Analysis In order to use a PolySpace tool, the code is prepared and an analysis is launched which is turn produces results for
review.

Atomic In computer programming, atomic describes a unitary action or object that is essentially indivisible, unchangeable,
whole, and irreducible.

Atomicity In a transaction involving two or more discrete pieces of information, either all of the pieces are committed or none
are.

Batch mode Execution of PolySpace Verifier from the command line, rather than via the launcher GUI.

Category One of four types of orange check: potential bug, inconclusive check, data set issue and basic imprecision

Certain error See red error

Check Test performed by PolySpace during analysis, coloured red, orange, green or grey in the viewer

Dead code Code which is inaccessible at execution time under all circumstances, due to the logic of the software executed

before it.

Development Process

Development process used within a company to progress through the software development lifecycle.

Green check

Check found to be confirmed as error free

Grey code Dead code

Imprecision Approximations made during PolySpace analysis, so that data values possible at execution time are represented by
supersets including those values

mcpu Micro Controller/Processor Unit

Orange warning

Check found to represent a possible error, which may be revealed on further investigation.

PolySpace Approach

The manner of use of PolySpace to achieve a particular goal, with reference to a collection of techniques and guiding
principles.

Precision

An analysis which includes few inconclusive orange checks is said to be precise

Progress text

Output from PolySpace during analysis to indicate what proportion of the analysis has been completed. Could be
considered as a “textual progress bar”.

Red error

Check found to represent a definite error

Review

Inspection of the results produced by a PolySpace analysis, using the Viewer.

Release 2007a+
Revision 4.2 vA

375/377

Scaling option

Option applied when an application submitted to PolySpace Verifier proves to be bigger or more complex than is
practical.

Selectivity

The ratio of (green + + red) / (total amount of checks)

Unreached code

Dead code

Release 2007a+
Revision 4.2 vA

376/377

PonSpace

TECHNOLOGIES

Previous Back to table of contents

9.2. Abstract semantic

Static Verification is a broad term, and is applicable to any tool which derives dynamic properties of a
program without actually executing it. Static Verification differs significantly from other techniques, such
as run-time debugging, in that the analysis it provides is not based on a given test case or set of test
cases. The dynamic properties obtained in the PolySpace analysis are true for all executions of the
software.

Most Static Verification tools only provide an analysis of the complexity of the software, in a search for
constructs which may be potentially dangerous. PolySpace provides deep-level analysis identifying
almost all run-time errors and possible access conflicts on global shared data.

The idea is to use an approximation of the software under analysis, using safe and representative
approximations of software operations and data.

An example is given below:

for (i=0; 1<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable 'i' never overflows the range of 'tab’ a traditional approach would be to
enumerate each possible value of 'i'. One thousand checks would be needed.

Using the static verification approach, the variable 'i' is modelled by its variation domain. For instance
the model of 'i" is that it belongs to the [0..999] static interval (Depending on the complexity of the data,
convex polyhedrons, integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance, the information that 'i' is
incremented by one every cycle in the loop is lost. However the important fact is that this information is
not required to ensure that no range error will occur; it is only necessary to prove that the variation
domain of 'i" is smaller than the range of 'tab’. Only one check is required to establish that — and hence
the gain in efficiency compared to traditional approaches.

Static code verification has an exact solution but it is generally not practical, as it would in general
require the enumeration of all possible test cases. As a result, approximation is required if a usable tool
IS to result.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that PolySpace works by performing upper
approximations. In other words, the computed variation domain of any program variable is always a
superset of its actual variation domain. The direct consequence is that no run-time error (RTE) item to
be checked, in the list of run-time error checked by PolySpace, can be missed by PolySpace.

Release 2007a+ 377/377
Revision 4.2 vA

	Local Disk
	PolySpace for C++ Documentation
	Table of contents
	1. PolySpace documentation set
	2. Getting started
	2.1. General Requirements
	2.1.1. Computer Configuration
	2.1.2. Installation Guide
	2.1.3. Structure of this document

	2.2. Step 1: PolySpace Client - Setting up and launching an analysis on a single class
	2.2.1. Analysis prerequisites
	2.2.2. Setting up a PolySpace Client analysis
	2.2.2.1. Select results directory
	2.2.2.2. Select the files of the analysis
	2.2.2.3. Select the class to analyse

	2.2.3. PolySpace Client: running the analysis
	2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
	2.2.3.2. Progression of the analysis
	2.2.3.3. End of the analysis

	2.3. Step 2: Class Analyzer
	2.3.1. Sources to be analysed
	2.3.2. Architecture of the generated main
	2.3.3. Log file
	2.3.4. Characteristics of a class and messages of the log file
	2.3.5. Behaviour of Global variables and members
	2.3.6. Methods and classes specificities

	2.4. Step 3: PolySpace Viewer - Exploration of results
	2.4.1. Modes of operation
	2.4.2. Downlaod results into the Viewer
	2.4.3. Analysing of PolySpace results (“training.cpp”)
	2.4.3.1. RTE view
	2.4.3.2. Colours in the Source code view
	2.4.3.3. More examples of run-time errors
	2.4.3.4. Advanced results exploration
	2.4.3.5. C++ specific checks
	2.4.3.6. Miscellaneous

	2.4.4. Methodological asssitant
	2.4.4.1. Assistant dashboard
	2.4.4.2. Choose a methodological assistant

	2.4.5. Report Generation

	2.5. Launch PolySpace Remotely
	2.5.1. Steps of Launching
	2.5.2. Management of PolySpace analysis in remote: the PolySpace Spooler
	2.5.3. Batch commands
	2.5.4. Share analyses between accounts

	2.6. Summary

	3. Analysis setup
	3.1. Common Compile errors
	3.1.1. Includes
	3.1.2. Specific keyword or extended keyword
	3.1.3. Initialization of global variables

	3.2. Dialect issues
	3.2.1. iso versus default dialects
	3.2.2. CFront2 and CFront3 dialects
	3.2.3. Visual dialects

	3.3. Link messages
	3.3.1. STL library C++ Stubbing errors
	3.3.2. Lib C stubbing errors

	3.4. Methodology using the pre-processed .ci files
	3.5. OS and target specifications
	3.5.1. List of already predefined compilation flags
	3.5.2. Target specifications

	3.6. Intermediate language errors
	3.7. Advanced setup
	3.7.1. Reduce oranges step by step
	3.7.1.1. Vary the precision level
	3.7.1.2. Apply some manual stubbing
	3.7.1.2.1. Examples: specification
	3.7.1.2.2. Coloured source code example
	3.7.1.2.3. Specify the call sequence
	3.7.1.2.4. Constraint for data
	3.7.1.2.5. Recoding of some specific functions

	3.7.2. Approximations made by PolySpace
	3.7.2.1. Volatile variables
	3.7.2.2. Structures with volatile fields
	3.7.2.3. Absolute addresses
	3.7.2.4. Pointer comparison
	3.7.2.5. Left shift on negative variables
	3.7.2.6. Some bitwise operators
	3.7.2.7. Bitfieds
	3.7.2.8. Float loops
	3.7.2.9. Shared variables
	3.7.2.10. Array of function pointers
	3.7.2.11. Trigonometric functions
	3.7.2.12. Unions
	3.7.2.13. Loop exit conditions
	3.7.2.14. Constant pointer

	3.7.3. Variables
	3.7.3.1. How are variables initialized?
	3.7.3.2. Data and coding rules
	3.7.3.3. Variables: Declaration and definition
	3.7.3.4. How can I model variable values external to my application?

	3.7.4. Types promotion
	3.7.4.1. An example of an unsigned promoted to signed
	3.7.4.2. What are the promotions rules in operators?

	3.7.5. Built-in functions

	4. PolySpace class analyzer process
	4.1. Why providing a class analyzer?
	4.2. Simple class
	4.3. Simple inheritance
	4.4. Multiple inheritance
	4.5. Abstract class
	4.6. Virtual inheritance
	4.7. Other types

	5. PolySpace C++ add-in for Visual Studio
	5.1. PolySpace usage inside Visual Studio
	5.1.1. PolySpace Parameters Inside Visual Studio
	5.1.2. Your first PolySpace Class analysis inside Visual Studio
	5.1.3. The configuration file and default options

	5.2. Launching an analysis on the entire project

	6. PolySpace UML Link RH
	6.1. Getting Started
	6.1.1. Step 1 - Open and display the example airbag model
	6.1.2. Step 2 - Starting an analysis
	6.1.3. Step 3 - The Start Analysis Panel
	6.1.4. Step 4 - Navigating from the PolySpace results to the Rhapsody model

	6.2. PolySpace Panel
	6.3. Installing the Integration into an existing model
	6.4. Other Topics

	7. Working with results review
	7.1. Basics: prerequisite being able to review PolySpace results
	7.1.1. Grey follows red
	7.1.2. What is the message and what does it mean?
	7.1.3. What is the C++ explanation?
	7.1.4. Review run-time errors: Fix red errors
	7.1.5. Review dead code checks: why is grey code interesting?
	7.1.6. How to conclude an orange review
	7.1.6.1. What is an orange?
	7.1.6.2. What are the different sources of oranges?
	7.1.6.3. How to determine the cause of one orange?

	7.2. Methodology: selective orange review
	7.2.1. The basic principles
	7.2.2. The rationale behind the approach
	7.2.3. In practice
	7.2.4. Step by step
	7.2.5. Considering the effects of application code size

	7.3. Category of checks
	7.3.1. Function returns a value: FRV
	7.3.2. Non null this-pointer: NNT
	7.3.3. Positive array size: CPP
	7.3.4. incorrect typeid argument: CPP
	7.3.5. incorrect dynamic_cast on pointer: CPP
	7.3.6. incorrect dynamic_cast on reference: CPP
	7.3.7. invalid pointer to member: OOP
	7.3.8. Call of pure virtual function: OOP
	7.3.9. incorrect type for this-pointer: OOP
	7.3.10. potential call to: INF
	7.3.11. Non-Initialized Variable: NIV/NIVL
	7.3.12. Non-Initialized Pointer: NIP
	7.3.13. User Assertion failure: ASRT
	7.3.14. Overflows and underflows
	7.3.14.1. Scalar and Float Overflows: OVFL
	7.3.14.2. Scalar and Float Underflows: UNFL
	7.3.14.3. Float underflow and overflow: UOVFL
	7.3.14.4. Overflow on the biggest float
	7.3.14.5. Constant overflow
	7.3.14.6. Float underflow versus values near zero

	7.3.15. Scalar or Float Division by zero: ZDV
	7.3.16. Shift amount is outside its bounds: SHF
	7.3.17. Left operand of left shift is negative: SHF
	7.3.18. Power must be positive: POW
	7.3.19. Array index is outside its bounds: OBAI
	7.3.20. Function pointer must point to a valid function: COR
	7.3.21. Wrong number of arguments: COR
	7.3.22. Wrong type of argument: COR
	7.3.23. Pointer is outside its bounds: IDP
	7.3.23.1. Understanding addressing
	7.3.23.1.1. hardware registers
	7.3.23.1.2. NULL pointer
	7.3.23.1.3. Comparing address

	7.3.23.2. Understanding pointers
	7.3.23.2.1. How does malloc work for PolySpace?
	7.3.23.2.2. Structure Handling
	7.3.23.2.2.1. Array conversions: COR
	7.3.23.2.2.2. Mapping of a small structure into a bigger one

	7.3.24. logic_error is thrown: EXC
	7.3.25. runtime_error is thrown: EXC
	7.3.26. Function throws: EXC
	7.3.27. Call to throws: EXC
	7.3.28. destructor or delete throws: EXC
	7.3.29. Main, tasks or C library function throws: EXC
	7.3.30. exception raised is not specified in the throw list: EXC
	7.3.31. throw during catch parameter construction: EXC
	7.3.32. Continue execution in __except: EXC
	7.3.33. Unreachable code: UNR
	7.3.34. Values on assignment: VOA
	7.3.35. Non Terminations: Calls and Loops
	7.3.35.1. Non Termination of Call: NTC
	7.3.35.2. Non Termination of Loop: NTL

	7.4. Advanced results review
	7.4.1. Red checks where grey checks were expected
	7.4.2. Potential side effect of a red error

	8. Options description
	8.1. Sources/Includes
	8.1.1. -results-dir Results_Directory
	8.1.2. -sources files or -sources-list-file file_name
	8.1.3. -I directory

	8.2. General
	8.2.1. -prog Session identifier
	8.2.2. -date Date
	8.2.3. -author Author
	8.2.4. -verif-version Version
	8.2.5. -voa
	8.2.6. -keep-all-files
	8.2.7. -continue-with-existing-host
	8.2.8. -allow-unsupported-linux

	8.3. Targets/Compilers
	8.3.1. -target TargetProcessorType
	8.3.2. -OS-target OperatingSystemTarget
	8.3.3. -D compiler-flag
	8.3.4. -U compiler-flag
	8.3.5. -include file1[,file2[,...]]
	8.3.6. -post-preprocessing-command command
	8.3.7. -post-analysis-command <file_name> or "command"

	8.4. Compliance with standards
	8.4.1. -dos
	8.4.2. Embedded Assembler
	8.4.2.1. -discard-asm
	8.4.2.2. Pragmas asm

	8.4.3. -wchar-t-is-unsigned-long
	8.4.4. -size-t-is-unsigned-long
	8.4.5. -no-extern-C
	8.4.6. -no-stl-stubs
	8.4.7. -dialect DialectName
	8.4.8. -wchar-t-is
	8.4.9. -for-loop-index-scope
	8.4.10. Visual specific options
	8.4.10.1. -import-dir directory
	8.4.10.2. -ignore-pragma-pack
	8.4.10.3. -pack-alignment-value value
	8.4.10.4. -support-FX-option-results

	8.4.11. -ignore-constant-overflows
	8.4.12. -allow-undef-variables
	8.4.13. -allow-negative-operand-in-shift
	8.4.14. -Wall

	8.5. Inner settings
	8.5.1. -main sub_program_name
	8.5.2. Generate a main using a given class
	8.5.2.1. -class-analyzer
	8.5.2.2. -class-only
	8.5.2.3. -class-analyzer-calls
	8.5.2.4. -no-constructors-init-check

	8.5.3. -main-generator-calls
	8.5.4. General options for the generation of mains
	8.5.4.1. -function-called-before-main
	8.5.4.2. -main-generator-writes-variables

	8.5.5. -no-automatic-stubbing
	8.5.6. -ignore-float-rounding
	8.5.7. -detect-unsigned-overflows
	8.5.8. -extra-flags option-extra-flag
	8.5.9. -cpp-extra-flags flag

	8.6. Precision/Scaling
	8.6.1. -quick
	8.6.2. -O(0-3)
	8.6.3. -from verification-phase
	8.6.4. -to verification-phase
	8.6.5. -path-sensitivity-delta number
	8.6.6. -context-sensitivity "proc1[,proc2[,...]]"
	8.6.7. -context-sensitivity-auto
	8.6.8. -respect-types-in-globals
	8.6.9. -k-limiting number
	8.6.10. -respect-types-in-fields
	8.6.11. -inline "proc1[,proc2[,...]]"
	8.6.12. Tuning precision and scaling parameters

	8.7. Multitasking (PolySpace Server only)
	8.7.1. -entry-points task1[,task2[,...]]
	8.7.2. Critical sections
	8.7.3. -temporal-exclusions-file file_name

	8.8. Specific batch options
	8.8.1. -server server_name_or_ip[:port_number]
	8.8.2. -h[elp]
	8.8.3. -v |-version
	8.8.4. -sources-list-file file_name

	9. Appendix
	9.1. Glossary
	9.2. Abstract semantic

